Artwork

Sebastian Ritterbusch and Gudrun Thäter에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Sebastian Ritterbusch and Gudrun Thäter 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Ginkgo

54:37
 
공유
 

Manage episode 293557093 series 177119
Sebastian Ritterbusch and Gudrun Thäter에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Sebastian Ritterbusch and Gudrun Thäter 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Gudrun spricht mit Hartwig Anzt. Er leitet die Helmholtz-Nachwuchsgruppe Fixed-point methods for numerics at Exascale (FiNE) am SCC. Seine Forschung beschäftigt sich mit numerischer linearer Algebra in modernen Hochleistungsrechnersystemen. Angesichts des explosionsartigen Anstiegs der Hardware-Parallelität erfordert die effiziente Ausführung von Anwendungen auf solchen Systemen eine völlige Neugestaltung der zugrunde liegenden numerischen Methoden. Dieses neue Paradigma muss Implementierungen umfassen, die sich auf die Parallelität auf Knotenebene, ein reduziertes globales Kommunikationsvolumen und abgeschwächte Synchronisationsanforderungen konzentrieren.

Hartwig ist Teil des PEEKS und xSDK-Projekts und leitet die Multiprecision-Initiative im US Exascale Computing Project (ECP). Das Ziel dieser Initiative besteht darin, die Nutzung verschiedener arithmetischer Präzisionen in numerische Algorithmen zu erforschen, wodurch viele Algorithmen beschleunigt werden können, ohne dabei Genauigkeit einzubüßen.

Hartwigs Forschungsschwerpunkt liegt auf der Entwicklung und Optimierung numerischer Methoden für effizientes Hochleistungsrechnen. Insbesondere interessiert er sich für lineare Algebra für dünn besetzte Matrizen, iterative und asynchrone Methoden, Krylov-Löser und Vorkonditionierung. Die zugrundeliegende Idee besteht darin, numerische Probleme als Fixpunktprobleme umzuformulieren, um höhere Parallelisierungsgrade zu ermöglichen. Die Implementierung der Fixpunktmethoden macht typischerweise starken Gebrauch von (datenparallelen) Batch-Routinen und weist schwache Synchronisationsanforderungen auf. Die Algorithmenforschung wird ergänzt durch Bemühungen, die auf eine nachhaltige Software-Entwicklung in einem akademischen Umfeld und einen gesunden Software-Lebenszyklus abzielen. Ein Ergebnis dieser Bemühungen ist Ginkgo, eine Open Source Softwarebibliothek für numerische lineare Algebra mit dem Fokus auf Löser für dünn besetzte Systeme, die Hartwig ins Leben gerufen hat.

Bei dem Stichwort Software-Nachhaltigkeit könnte man an das Vorhandensein eines Continuous Integration (CI)-Frameworks denken, also das Vorhandensein eines Test-Frameworks, das aus Unit-Tests, Integrationstests und End-to-End-Tests besteht (inkl. das Vorhandensein einer Software-Dokumentation). Wenn man jedoch fragt, was der übliche Todesstoß für ein wissenschaftliches Softwareprodukt ist, ist es oft die fehlende Plattform- und Leistungsportabilität. Vor diesem Hintergrund haben Hartwig und seine Gruppe wir Ginkgo-Bibliothek mit dem primären Fokus auf Plattform-Portabilität und der Fähigkeit, nicht nur auf neue Hardware-Architekturen zu portieren, sondern auch eine gute Performance zu erreichen, entwickelt. Die grundlegende Idee beim Design der Ginkgo-Bibliothek ist eine radikale Trennung der Algorithmen von den hardwarespezifischen Dingen.

Daneben sprechen Gudrun und Hartwig über die Nutzung von Kalkülen mit geringer Genauigkeit für letztendlich präzise Algorithmen. Die Hardware-Anbieter haben nämlich damit begonnen, spezielle Funktionseinheiten mit geringer Genauigkeit zu entwickeln, um der Nachfrage z.B. der Machine-Learning-Community und deren Bedarf an hoher Rechenleistung in Formaten mit geringer Genauigkeit zu entsprechen. Hartwig konzentriert sich darauf, wie dann Mixed- und Multiprecision-Technologie helfen kann, die Leistung dieser Methoden zu verbessern und findet Anwendungen, die die traditionellen Methoden mit fester Genauigkeit deutlich übertreffen.


Podcasts

  continue reading

251 에피소드

Artwork

Ginkgo

Modellansatz

20 subscribers

published

icon공유
 
Manage episode 293557093 series 177119
Sebastian Ritterbusch and Gudrun Thäter에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Sebastian Ritterbusch and Gudrun Thäter 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Gudrun spricht mit Hartwig Anzt. Er leitet die Helmholtz-Nachwuchsgruppe Fixed-point methods for numerics at Exascale (FiNE) am SCC. Seine Forschung beschäftigt sich mit numerischer linearer Algebra in modernen Hochleistungsrechnersystemen. Angesichts des explosionsartigen Anstiegs der Hardware-Parallelität erfordert die effiziente Ausführung von Anwendungen auf solchen Systemen eine völlige Neugestaltung der zugrunde liegenden numerischen Methoden. Dieses neue Paradigma muss Implementierungen umfassen, die sich auf die Parallelität auf Knotenebene, ein reduziertes globales Kommunikationsvolumen und abgeschwächte Synchronisationsanforderungen konzentrieren.

Hartwig ist Teil des PEEKS und xSDK-Projekts und leitet die Multiprecision-Initiative im US Exascale Computing Project (ECP). Das Ziel dieser Initiative besteht darin, die Nutzung verschiedener arithmetischer Präzisionen in numerische Algorithmen zu erforschen, wodurch viele Algorithmen beschleunigt werden können, ohne dabei Genauigkeit einzubüßen.

Hartwigs Forschungsschwerpunkt liegt auf der Entwicklung und Optimierung numerischer Methoden für effizientes Hochleistungsrechnen. Insbesondere interessiert er sich für lineare Algebra für dünn besetzte Matrizen, iterative und asynchrone Methoden, Krylov-Löser und Vorkonditionierung. Die zugrundeliegende Idee besteht darin, numerische Probleme als Fixpunktprobleme umzuformulieren, um höhere Parallelisierungsgrade zu ermöglichen. Die Implementierung der Fixpunktmethoden macht typischerweise starken Gebrauch von (datenparallelen) Batch-Routinen und weist schwache Synchronisationsanforderungen auf. Die Algorithmenforschung wird ergänzt durch Bemühungen, die auf eine nachhaltige Software-Entwicklung in einem akademischen Umfeld und einen gesunden Software-Lebenszyklus abzielen. Ein Ergebnis dieser Bemühungen ist Ginkgo, eine Open Source Softwarebibliothek für numerische lineare Algebra mit dem Fokus auf Löser für dünn besetzte Systeme, die Hartwig ins Leben gerufen hat.

Bei dem Stichwort Software-Nachhaltigkeit könnte man an das Vorhandensein eines Continuous Integration (CI)-Frameworks denken, also das Vorhandensein eines Test-Frameworks, das aus Unit-Tests, Integrationstests und End-to-End-Tests besteht (inkl. das Vorhandensein einer Software-Dokumentation). Wenn man jedoch fragt, was der übliche Todesstoß für ein wissenschaftliches Softwareprodukt ist, ist es oft die fehlende Plattform- und Leistungsportabilität. Vor diesem Hintergrund haben Hartwig und seine Gruppe wir Ginkgo-Bibliothek mit dem primären Fokus auf Plattform-Portabilität und der Fähigkeit, nicht nur auf neue Hardware-Architekturen zu portieren, sondern auch eine gute Performance zu erreichen, entwickelt. Die grundlegende Idee beim Design der Ginkgo-Bibliothek ist eine radikale Trennung der Algorithmen von den hardwarespezifischen Dingen.

Daneben sprechen Gudrun und Hartwig über die Nutzung von Kalkülen mit geringer Genauigkeit für letztendlich präzise Algorithmen. Die Hardware-Anbieter haben nämlich damit begonnen, spezielle Funktionseinheiten mit geringer Genauigkeit zu entwickeln, um der Nachfrage z.B. der Machine-Learning-Community und deren Bedarf an hoher Rechenleistung in Formaten mit geringer Genauigkeit zu entsprechen. Hartwig konzentriert sich darauf, wie dann Mixed- und Multiprecision-Technologie helfen kann, die Leistung dieser Methoden zu verbessern und findet Anwendungen, die die traditionellen Methoden mit fester Genauigkeit deutlich übertreffen.


Podcasts

  continue reading

251 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드