Player FM 앱으로 오프라인으로 전환하세요!
ALS, DMD and Adapting Treatment Mechanisms for Genetic Variations
Manage episode 322853046 series 2102580
In this episode, we’ll dig into the different mechanisms by which gene therapy can potentially treat specific genetic diseases – such as amyotrophic lateral sclerosis, or ALS, and others.
In 1993, a multinational group of scientists and doctors solved a medical mystery 150 years in the making.
And they did it, in part, by examining the genealogy of a particular family in Vermont. In 1835, a farmer named Erastus Farr died of a mysterious illness characterized by a progressive weakening of his muscles followed by paralysis and respiratory failure.
Thirty years later, his descendent Samuel Farr died of the same condition, as did four of Samuel’s eight children, the youngest at the age of 27.
By 1880, the Canadian physician Sir William Osler had studied the Farr family phenomenon and concluded that they all suffered from a newly identified disease known as amyotrophic lateral sclerosis.
But how could this frightening condition be passed from one generation to the next?
Over the next hundred years, scientific interest in the disease grew, especially after the legendary baseball player Lou Gehrig died of the disease in 1941.
But there was still a mystery: while 90% of ALS cases are considered sporadic – meaning there is no hereditary connection – the other 10% of cases seemed to run in families, like the Farrs.
After the dawn of the genetic age, scientists began to suspect a gene variation was at the heart of the mystery. And then finally, in 1993, scientists including Robert Brown at the University of Massachusetts medical school, who studied the Farr family and others while also investigating the human genome, uncovered the answer.
In some ALS patients, a variant of a single gene, called SOD1, can cause a buildup of toxic proteins in the brain, leading to the various symptoms that characterize the disease. In this case, the goal of gene therapy is to block or silence the abnormal production of a protein.
And solving that mystery has paved the way for gene therapy, perhaps someday soon, to provide the first known treatment for familial ALS.
For more education on gene therapy, visit www.genetherapynetwork.com.
78 에피소드
Manage episode 322853046 series 2102580
In this episode, we’ll dig into the different mechanisms by which gene therapy can potentially treat specific genetic diseases – such as amyotrophic lateral sclerosis, or ALS, and others.
In 1993, a multinational group of scientists and doctors solved a medical mystery 150 years in the making.
And they did it, in part, by examining the genealogy of a particular family in Vermont. In 1835, a farmer named Erastus Farr died of a mysterious illness characterized by a progressive weakening of his muscles followed by paralysis and respiratory failure.
Thirty years later, his descendent Samuel Farr died of the same condition, as did four of Samuel’s eight children, the youngest at the age of 27.
By 1880, the Canadian physician Sir William Osler had studied the Farr family phenomenon and concluded that they all suffered from a newly identified disease known as amyotrophic lateral sclerosis.
But how could this frightening condition be passed from one generation to the next?
Over the next hundred years, scientific interest in the disease grew, especially after the legendary baseball player Lou Gehrig died of the disease in 1941.
But there was still a mystery: while 90% of ALS cases are considered sporadic – meaning there is no hereditary connection – the other 10% of cases seemed to run in families, like the Farrs.
After the dawn of the genetic age, scientists began to suspect a gene variation was at the heart of the mystery. And then finally, in 1993, scientists including Robert Brown at the University of Massachusetts medical school, who studied the Farr family and others while also investigating the human genome, uncovered the answer.
In some ALS patients, a variant of a single gene, called SOD1, can cause a buildup of toxic proteins in the brain, leading to the various symptoms that characterize the disease. In this case, the goal of gene therapy is to block or silence the abnormal production of a protein.
And solving that mystery has paved the way for gene therapy, perhaps someday soon, to provide the first known treatment for familial ALS.
For more education on gene therapy, visit www.genetherapynetwork.com.
78 에피소드
모든 에피소드
×플레이어 FM에 오신것을 환영합니다!
플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.