Artwork

Jason Edwards에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Jason Edwards 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Episode 20 — Evaluating AI Performance

31:38
 
공유
 

Manage episode 505486171 series 3689029
Jason Edwards에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Jason Edwards 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Knowing that an AI model works is not enough — we need to know how well it works, and under what conditions. This episode explores the frameworks and metrics used to evaluate AI performance. We begin with accuracy, precision, recall, F1 score, and confusion matrices for classification problems, then move to regression metrics like mean squared error and R². For clustering and ranking tasks, we cover silhouette scores, adjusted Rand index, and average precision. Each metric is explained not just technically, but in terms of what it reveals — and what it hides — about system performance.

Evaluation goes beyond numbers. Robustness testing with noisy or adversarial data shows whether a model will hold up in real-world conditions. Fairness evaluation ensures systems do not perform unequally across demographics, while explainability testing helps determine if results can be trusted by human decision-makers. We’ll also discuss benchmarks, competitions, and continuous monitoring after deployment. By the end of this episode, listeners will understand that evaluation is a multidimensional process, linking technical performance to fairness, accountability, and reliability. Produced by BareMetalCyber.com, where you’ll find more cyber prepcasts, books, and information to strengthen your certification path.

  continue reading

48 에피소드

Artwork
icon공유
 
Manage episode 505486171 series 3689029
Jason Edwards에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Jason Edwards 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Knowing that an AI model works is not enough — we need to know how well it works, and under what conditions. This episode explores the frameworks and metrics used to evaluate AI performance. We begin with accuracy, precision, recall, F1 score, and confusion matrices for classification problems, then move to regression metrics like mean squared error and R². For clustering and ranking tasks, we cover silhouette scores, adjusted Rand index, and average precision. Each metric is explained not just technically, but in terms of what it reveals — and what it hides — about system performance.

Evaluation goes beyond numbers. Robustness testing with noisy or adversarial data shows whether a model will hold up in real-world conditions. Fairness evaluation ensures systems do not perform unequally across demographics, while explainability testing helps determine if results can be trusted by human decision-makers. We’ll also discuss benchmarks, competitions, and continuous monitoring after deployment. By the end of this episode, listeners will understand that evaluation is a multidimensional process, linking technical performance to fairness, accountability, and reliability. Produced by BareMetalCyber.com, where you’ll find more cyber prepcasts, books, and information to strengthen your certification path.

  continue reading

48 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생