Artwork

Jason Edwards에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Jason Edwards 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Episode 21 — Common Pitfalls and Bias in AI Systems

32:34
 
공유
 

Manage episode 505486172 series 3689029
Jason Edwards에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Jason Edwards 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

AI systems are only as good as the data and assumptions that shape them, and many fail because of recurring pitfalls. This episode outlines the most common problems, starting with poor data quality, unbalanced datasets, and labeling errors. We’ll discuss sampling bias, measurement bias, and the use of proxy variables that inadvertently encode sensitive traits. Overfitting, underfitting, and automation bias — where humans over-trust machine outputs — are introduced as technical and human pitfalls alike.

We then focus on bias as a deeper issue. Historical inequalities embedded in data can create systems that reinforce discrimination, from facial recognition tools with unequal accuracy to hiring algorithms that favor certain demographics. We cover strategies for detecting and mitigating bias, including pre-processing corrections, algorithmic adjustments, and post-processing interventions. Governance, documentation, and human oversight are emphasized as necessary complements to technical fixes. By the end, listeners will understand that building fair and trustworthy AI requires vigilance not just during design, but throughout deployment and use. Produced by BareMetalCyber.com, where you’ll find more cyber prepcasts, books, and information to strengthen your certification path.

  continue reading

48 에피소드

Artwork
icon공유
 
Manage episode 505486172 series 3689029
Jason Edwards에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Jason Edwards 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

AI systems are only as good as the data and assumptions that shape them, and many fail because of recurring pitfalls. This episode outlines the most common problems, starting with poor data quality, unbalanced datasets, and labeling errors. We’ll discuss sampling bias, measurement bias, and the use of proxy variables that inadvertently encode sensitive traits. Overfitting, underfitting, and automation bias — where humans over-trust machine outputs — are introduced as technical and human pitfalls alike.

We then focus on bias as a deeper issue. Historical inequalities embedded in data can create systems that reinforce discrimination, from facial recognition tools with unequal accuracy to hiring algorithms that favor certain demographics. We cover strategies for detecting and mitigating bias, including pre-processing corrections, algorithmic adjustments, and post-processing interventions. Governance, documentation, and human oversight are emphasized as necessary complements to technical fixes. By the end, listeners will understand that building fair and trustworthy AI requires vigilance not just during design, but throughout deployment and use. Produced by BareMetalCyber.com, where you’ll find more cyber prepcasts, books, and information to strengthen your certification path.

  continue reading

48 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생