Artwork

Confluent, founded by the original creators of Apache Kafka® and Founded by the original creators of Apache Kafka®에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Confluent, founded by the original creators of Apache Kafka® and Founded by the original creators of Apache Kafka® 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

What can Apache Kafka Developers learn from Online Gaming?

55:32
 
공유
 

Manage episode 424666711 series 2510642
Confluent, founded by the original creators of Apache Kafka® and Founded by the original creators of Apache Kafka®에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Confluent, founded by the original creators of Apache Kafka® and Founded by the original creators of Apache Kafka® 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

What can online gaming teach us about making large-scale event management more collaborative in real-time? Ben Gamble (Developer Relations Manager, Aiven) has come to the world of real-time event streaming from an usual source: the video games industry. And if you stop to think about it, modern online games are complex, distributed real-time data systems with decades of innovative techniques to teach us.
In this episode, Ben talks with Kris about integrating gaming concepts with Apache Kafka®. Using Kafka’s state management stream processing, Ben has built systems that can handle real-time event processing at a massive scale, including interesting approaches to conflict resolution and collaboration.
Building latency into a system is one way to mask data processing time. Ben says that you can efficiently hide latency issues and prioritize performance improvements by setting an initial target and then optimizing from there. If you measure before optimizing, you can add an extra layer to manage user expectations better. Tricks like adding a visual progress bar give the appearance of progress but actually hide latency and improve the overall user experience.
To effectively handle challenging activities, like resolving conflicts and atomic edits, Ben suggests “slicing” (or nano batching) to break down tasks into small, related chunks. Slicing allows each task to be evaluated separately, thus producing timely outcomes that resolve potential background conflicts without the user knowing.
Ben also explains how he uses pooling to make collaboration seamless. Pooling is a process that links open requests with potential matches. Similar to booking seats on an airplane, seats are assigned when requests are made. As these types of connections are handled through a Kafka event stream, the initial open requests are eventually fulfilled when seats become available.
According to Ben, real-world tools that facilitate collaboration (such as Google Docs and Slack) work similarly. Just like multi-player gaming systems, multiple users can comment or chat in real-time and users perceive instant responses because of the techniques ported over from the gaming world.
As Ben sees it, the proliferation of these types of concepts across disciplines will also benefit a more significant number of collaborative systems. Despite being long established for gamers, these patterns can be implemented in more business applications to improve the user experience significantly.
EPISODE LINKS

  continue reading

챕터

1. Intro (00:00:00)

2. Building real-time inspection machines (00:05:29)

3. Going Multiplayer with Kafka (00:07:14)

4. What does a real-time experience look like in gaming? (00:14:35)

5. Broken message offsets vs. dead letter queues (00:17:05)

6. The distributed transaction problem (00:19:15)

7. Solving for conflicting events with nano-batching (00:25:02)

8. Pooling in real-time systems (00:31:56)

9. Optimizing for latency (00:38:29)

10. Using column modeling to improve performance (00:44:08)

11. Principles for stream-processing (00:50:49)

12. It's a wrap! (00:52:46)

265 에피소드

Artwork
icon공유
 
Manage episode 424666711 series 2510642
Confluent, founded by the original creators of Apache Kafka® and Founded by the original creators of Apache Kafka®에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Confluent, founded by the original creators of Apache Kafka® and Founded by the original creators of Apache Kafka® 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

What can online gaming teach us about making large-scale event management more collaborative in real-time? Ben Gamble (Developer Relations Manager, Aiven) has come to the world of real-time event streaming from an usual source: the video games industry. And if you stop to think about it, modern online games are complex, distributed real-time data systems with decades of innovative techniques to teach us.
In this episode, Ben talks with Kris about integrating gaming concepts with Apache Kafka®. Using Kafka’s state management stream processing, Ben has built systems that can handle real-time event processing at a massive scale, including interesting approaches to conflict resolution and collaboration.
Building latency into a system is one way to mask data processing time. Ben says that you can efficiently hide latency issues and prioritize performance improvements by setting an initial target and then optimizing from there. If you measure before optimizing, you can add an extra layer to manage user expectations better. Tricks like adding a visual progress bar give the appearance of progress but actually hide latency and improve the overall user experience.
To effectively handle challenging activities, like resolving conflicts and atomic edits, Ben suggests “slicing” (or nano batching) to break down tasks into small, related chunks. Slicing allows each task to be evaluated separately, thus producing timely outcomes that resolve potential background conflicts without the user knowing.
Ben also explains how he uses pooling to make collaboration seamless. Pooling is a process that links open requests with potential matches. Similar to booking seats on an airplane, seats are assigned when requests are made. As these types of connections are handled through a Kafka event stream, the initial open requests are eventually fulfilled when seats become available.
According to Ben, real-world tools that facilitate collaboration (such as Google Docs and Slack) work similarly. Just like multi-player gaming systems, multiple users can comment or chat in real-time and users perceive instant responses because of the techniques ported over from the gaming world.
As Ben sees it, the proliferation of these types of concepts across disciplines will also benefit a more significant number of collaborative systems. Despite being long established for gamers, these patterns can be implemented in more business applications to improve the user experience significantly.
EPISODE LINKS

  continue reading

챕터

1. Intro (00:00:00)

2. Building real-time inspection machines (00:05:29)

3. Going Multiplayer with Kafka (00:07:14)

4. What does a real-time experience look like in gaming? (00:14:35)

5. Broken message offsets vs. dead letter queues (00:17:05)

6. The distributed transaction problem (00:19:15)

7. Solving for conflicting events with nano-batching (00:25:02)

8. Pooling in real-time systems (00:31:56)

9. Optimizing for latency (00:38:29)

10. Using column modeling to improve performance (00:44:08)

11. Principles for stream-processing (00:50:49)

12. It's a wrap! (00:52:46)

265 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드