Artwork

HackerNoon에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 HackerNoon 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Orca 2: Enhancing Reasoning in Smaller Language Models - Technical Details

8:48
 
공유
 

Manage episode 421181730 series 3474159
HackerNoon에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 HackerNoon 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/orca-2-enhancing-reasoning-in-smaller-language-models-technical-details.
Orca 2 enhances small language models' reasoning by teaching diverse strategies for tasks, outperforming models up to 10x larger in complex benchmarks.
Check more stories related to programming at: https://hackernoon.com/c/programming. You can also check exclusive content about #language-models, #orca-2, #reasoning-techniques, #machine-learning, #small-models, #imitation-learning, #ai-benchmarks, #model-training, and more.
This story was written by: @textmodels. Learn more about this writer by checking @textmodels's about page, and for more stories, please visit hackernoon.com.
The Orca 2 dataset has four main sources:FLAN: Our main source of prompts for synthetic data generation is the FLAN-v2 Collection 33, which consists of five sub-collections. Following Orca 1 42, we consider tasks from only CoT, NiV2, T0, Flan 2021 and Dialogue. Some of the tasks are associated with an associated answer. For the Cautious Reasoning dataset we selected ~602 zero-shot user queries from the split of 1448 high quality tasks out of 1913.

  continue reading

346 에피소드

Artwork
icon공유
 
Manage episode 421181730 series 3474159
HackerNoon에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 HackerNoon 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/orca-2-enhancing-reasoning-in-smaller-language-models-technical-details.
Orca 2 enhances small language models' reasoning by teaching diverse strategies for tasks, outperforming models up to 10x larger in complex benchmarks.
Check more stories related to programming at: https://hackernoon.com/c/programming. You can also check exclusive content about #language-models, #orca-2, #reasoning-techniques, #machine-learning, #small-models, #imitation-learning, #ai-benchmarks, #model-training, and more.
This story was written by: @textmodels. Learn more about this writer by checking @textmodels's about page, and for more stories, please visit hackernoon.com.
The Orca 2 dataset has four main sources:FLAN: Our main source of prompts for synthetic data generation is the FLAN-v2 Collection 33, which consists of five sub-collections. Following Orca 1 42, we consider tasks from only CoT, NiV2, T0, Flan 2021 and Dialogue. Some of the tasks are associated with an associated answer. For the Cautious Reasoning dataset we selected ~602 zero-shot user queries from the split of 1448 high quality tasks out of 1913.

  continue reading

346 에피소드

כל הפרקים

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생