Artwork

Varun Kumar에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Varun Kumar 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

AI Red Teaming Guide for Beginners in 2025

20:16
 
공유
 

Manage episode 505134042 series 3667853
Varun Kumar에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Varun Kumar 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

This episode delves into the critical field of AI Red Teaming, a structured, adversarial process designed to identify vulnerabilities and weaknesses in AI systems before malicious actors can exploit them.

The Certified AI Security Professional (CAISP) course is specifically designed to advance careers in this field, offering practical skills in executing attacks using MITRE ATLAS and OWASP Top 10, implementing enterprise AI security, threat modelling with STRIDE, and protecting AI development pipelines. This certification is industry-recognized and boosts an AI security career, with roles like AI Security Consultant and Red Team Lead offering high salary potential.

It's an essential step in building safe, reliable, and trustworthy AI systems, preventing issues like data leakage, unfair results, and system takeovers.

AI Red Teaming involves human experts and automated tools to simulate attacks. Red teamers craft special inputs like prompt injections to bypass safety controls, generate adversarial examples to confuse AI, and analyse model behaviour for consistency and safety. Common attack vectors include jailbreaking to bypass ethical guardrails, data poisoning to introduce toxic data, and model inversion to learn training data, threatening privacy and confidentiality.

The importance of AI Red Teaming is highlighted through real-world examples: discovering unfair hiring programs using zip codes, manipulating healthcare AI systems to report incorrect cancer tests, and tricking autonomous vehicles by subtly altering sensor readings. It also plays a vital role in securing financial fraud detection systems, content moderation, and voice assistants/LLMs. Organisations also use it for regulatory compliance testing, adhering to standards like GDPR and the EU AI Act.

Several tools and frameworks support AI Red Teaming. Mindgard, Garak, HiddenLayer, PyRIT, and Microsoft Counterfit are prominent tools. Open-source libraries like Adversarial Robustness Toolbox (ART), CleverHans, and TextAttack are also crucial.

Key frameworks include the MITRE ATLAS Framework for mapping adversarial tactics and the OWASP ML Security Top 10, which outlines critical AI vulnerabilities like prompt injection and model theft.

Ethical considerations are paramount, emphasising responsible disclosure, legal compliance (e.g., GDPR), harm minimisation, and thorough documentation to ensure transparency and accountability.

For professionals, upskilling in AI Red Teaming is crucial as AI expands attack surfaces that traditional penetration testing cannot address. Essential skills include Python programming, machine learning knowledge, threat modelling, and adversarial thinking.

  continue reading

3 에피소드

Artwork
icon공유
 
Manage episode 505134042 series 3667853
Varun Kumar에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Varun Kumar 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

This episode delves into the critical field of AI Red Teaming, a structured, adversarial process designed to identify vulnerabilities and weaknesses in AI systems before malicious actors can exploit them.

The Certified AI Security Professional (CAISP) course is specifically designed to advance careers in this field, offering practical skills in executing attacks using MITRE ATLAS and OWASP Top 10, implementing enterprise AI security, threat modelling with STRIDE, and protecting AI development pipelines. This certification is industry-recognized and boosts an AI security career, with roles like AI Security Consultant and Red Team Lead offering high salary potential.

It's an essential step in building safe, reliable, and trustworthy AI systems, preventing issues like data leakage, unfair results, and system takeovers.

AI Red Teaming involves human experts and automated tools to simulate attacks. Red teamers craft special inputs like prompt injections to bypass safety controls, generate adversarial examples to confuse AI, and analyse model behaviour for consistency and safety. Common attack vectors include jailbreaking to bypass ethical guardrails, data poisoning to introduce toxic data, and model inversion to learn training data, threatening privacy and confidentiality.

The importance of AI Red Teaming is highlighted through real-world examples: discovering unfair hiring programs using zip codes, manipulating healthcare AI systems to report incorrect cancer tests, and tricking autonomous vehicles by subtly altering sensor readings. It also plays a vital role in securing financial fraud detection systems, content moderation, and voice assistants/LLMs. Organisations also use it for regulatory compliance testing, adhering to standards like GDPR and the EU AI Act.

Several tools and frameworks support AI Red Teaming. Mindgard, Garak, HiddenLayer, PyRIT, and Microsoft Counterfit are prominent tools. Open-source libraries like Adversarial Robustness Toolbox (ART), CleverHans, and TextAttack are also crucial.

Key frameworks include the MITRE ATLAS Framework for mapping adversarial tactics and the OWASP ML Security Top 10, which outlines critical AI vulnerabilities like prompt injection and model theft.

Ethical considerations are paramount, emphasising responsible disclosure, legal compliance (e.g., GDPR), harm minimisation, and thorough documentation to ensure transparency and accountability.

For professionals, upskilling in AI Red Teaming is crucial as AI expands attack surfaces that traditional penetration testing cannot address. Essential skills include Python programming, machine learning knowledge, threat modelling, and adversarial thinking.

  continue reading

3 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생