Artwork

Ulrik B. Carlsson and Ulrik Carlsson에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Ulrik B. Carlsson and Ulrik Carlsson 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Matt and Ulrik make unsupervised product recommendation engines

51:28
 
공유
 

Manage episode 248013317 series 2582622
Ulrik B. Carlsson and Ulrik Carlsson에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Ulrik B. Carlsson and Ulrik Carlsson 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
This episode is brought to you by by Maplytics by Inogic. Data Scientist Matt Lamb and Microsoft MVP Ulrik Carlsson discusses how you create product recommendation engines. A separate discipline in data science, combining content filtering and collaborative filtering, to do targeted product recommendations is not only more difficult, but possibly also one of the most lucrative. Episode also includes in discussions on: Combining advanced customer profiling with transactional data.

  • Matt talks to his new product PinPoint, a product recommendation engine for the Aftermarket
  • How Content Filtering and Collaborative Filtering combined can make for advanced product recommendations
  • Why Ulrik doesn't like continued recommendations from Amazon to buy smoke detectors when they perfectly well know he already has two (and how to tune your algorithm to avoid annoying your customer).
  • Possible data science urban legend on Target identifying teenage pregnancies before concerned parents of pregnant teen knows about it.
  • Will Matt this time give a concrete answer to the question on how many records are needed to get good results from these algorithms?

Links: PinPoint for Aftermarket

  continue reading

23 에피소드

Artwork
icon공유
 
Manage episode 248013317 series 2582622
Ulrik B. Carlsson and Ulrik Carlsson에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Ulrik B. Carlsson and Ulrik Carlsson 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
This episode is brought to you by by Maplytics by Inogic. Data Scientist Matt Lamb and Microsoft MVP Ulrik Carlsson discusses how you create product recommendation engines. A separate discipline in data science, combining content filtering and collaborative filtering, to do targeted product recommendations is not only more difficult, but possibly also one of the most lucrative. Episode also includes in discussions on: Combining advanced customer profiling with transactional data.

  • Matt talks to his new product PinPoint, a product recommendation engine for the Aftermarket
  • How Content Filtering and Collaborative Filtering combined can make for advanced product recommendations
  • Why Ulrik doesn't like continued recommendations from Amazon to buy smoke detectors when they perfectly well know he already has two (and how to tune your algorithm to avoid annoying your customer).
  • Possible data science urban legend on Target identifying teenage pregnancies before concerned parents of pregnant teen knows about it.
  • Will Matt this time give a concrete answer to the question on how many records are needed to get good results from these algorithms?

Links: PinPoint for Aftermarket

  continue reading

23 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드