Das Kalenderblatt: Erstaunliches und Skurriles für jeden Tag – so informativ wie ein Lexikon, so bunt wie das Leben. Wie pflanzt man Spaghetti an? Und warum war Einstein auf dem Oktoberfest?
…
continue reading
Karlsruher Institut für Technologie (KIT)에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Karlsruher Institut für Technologie (KIT) 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!
Player FM 앱으로 오프라인으로 전환하세요!
09: Kognitive Systeme, Vorlesung, SS 2017, 19.06.2017
Manage episode 187895216 series 1562260
Karlsruher Institut für Technologie (KIT)에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Karlsruher Institut für Technologie (KIT) 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
09 | 0:00:00 Starten 0:00:10 HMM Problems And Solutions 0:02:34 HMMs In Speech Recognition 0:04:42 Model Topologies 0:05:49 Forward-Backward Training for Continuous Speech 0:06:26 Discrete HHM's Vector Quantization 0:08:37 Acoustic Modeling 0:12:38 Neural Net Approaches to Pattern Classification 0:12:47 Simple NN Vowel Classification 0:13:20 HMM-DeepNN Hybrids 0:14:24 Deep Neural Net Hybrids 0:18:59 Time-Delay Neural Network (TDNN) 0:26:51 Reverberation Robust Speech Reco 0:27:08 TDNN / CNN - Waibel 1987 0:28:53 Conversational Speech 0:29:17 Convolutional Nets 0:29:46 Convolutional Nets in Image Classification 0:30:43 Mastering the Game of Go 0:32:04 Speech Recognition (System Components) 0:32:50 Dictionaries 0:39:06 Language Models: Grammar Based 0:40:39 Speech Recognition 0:42:16 A Word Guessing Game 0:43:00 Bigrams and Trigrams 0:44:54 The Bag of Words Experiment 0:45:10 Language Models: N-Grams 0:46:56 Objective Estimation of Language Model Quality 0:55:21 The Perplexity of a Language Model 0:59:36 Recurrent Neural Nets 1:00:25 Elman Networks - Simple RNN 1:01:05 Jordan Networks - Simple RNN 1:01:43 Backpropagation Through Time 1:02:11 Modeling Sequences with RNN 1:02:54 Measuring Recognizer Performance 1:04:37 Factors Affecting Recognizer Performance 1:04:49 How Good Does it Have to be? 1:06:35 Voice Agents 1:11:17 Natural Language Processing 1:12:11 Machine Translation: Approaches 1:15:17 Statistical Machine Translation 1:18:47 RNN Encoder - Decoder 1:19:42 Neural Machine Translation 1:20:37 RNN Encoder-Decoder Architecture 1:21:05 Attention Mechanism in the Recurrent Decoder 1:21:28 BiRNN Encoder-Decoder with Attention Kognitive Systeme handeln aus der Erkenntnis heraus. Nach der Reizaufnahme durch Perzeptoren werden die Signale verarbeitet und aufgrund einer hinterlegten Wissensbasis gehandelt. In der Vorlesung werden die einzelnen Module eines kognitiven Systems vorgestellt. Hierzu gehören neben der Aufnahme und Verarbeitung von Umweltinformationen (z. B. Bilder, Sprache), die Repräsentation des Wissens sowie die Zuordnung einzelner Merkmale mit Hilfe von Klassifikatoren. Weitere Schwerpunkte der Vorlesung sind Lern- und Planungsmethoden und deren Umsetzung. In den Übungen werden die vorgestellten Methoden durch Aufgaben vertieft. Lehrinhalt: Kognitive Systeme handeln aus der Erkenntnis heraus. Nach der Reizaufnahme durch Perzeptoren werden die Signale verarbeitet und aufgrund einer hinterlegten Wissensbasis gehandelt. In der Vorlesung werden die einzelnen Module eines kognitiven Systems vorgestellt. Hierzu gehören neben der Aufnahme und Verarbeitung von Umweltinformationen (z. B. Bilder, Sprache), die Repräsentation des Wissens sowie die Zuordnung einzelner Merkmale mit Hilfe von Klassifikatoren. Weitere Schwerpunkte der Vorlesung sind Lern- und Planungsmethoden und deren Umsetzung. In den Übungen werden die vorgestellten Methoden durch Aufgaben vertieft.
…
continue reading
16 에피소드
Manage episode 187895216 series 1562260
Karlsruher Institut für Technologie (KIT)에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Karlsruher Institut für Technologie (KIT) 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
09 | 0:00:00 Starten 0:00:10 HMM Problems And Solutions 0:02:34 HMMs In Speech Recognition 0:04:42 Model Topologies 0:05:49 Forward-Backward Training for Continuous Speech 0:06:26 Discrete HHM's Vector Quantization 0:08:37 Acoustic Modeling 0:12:38 Neural Net Approaches to Pattern Classification 0:12:47 Simple NN Vowel Classification 0:13:20 HMM-DeepNN Hybrids 0:14:24 Deep Neural Net Hybrids 0:18:59 Time-Delay Neural Network (TDNN) 0:26:51 Reverberation Robust Speech Reco 0:27:08 TDNN / CNN - Waibel 1987 0:28:53 Conversational Speech 0:29:17 Convolutional Nets 0:29:46 Convolutional Nets in Image Classification 0:30:43 Mastering the Game of Go 0:32:04 Speech Recognition (System Components) 0:32:50 Dictionaries 0:39:06 Language Models: Grammar Based 0:40:39 Speech Recognition 0:42:16 A Word Guessing Game 0:43:00 Bigrams and Trigrams 0:44:54 The Bag of Words Experiment 0:45:10 Language Models: N-Grams 0:46:56 Objective Estimation of Language Model Quality 0:55:21 The Perplexity of a Language Model 0:59:36 Recurrent Neural Nets 1:00:25 Elman Networks - Simple RNN 1:01:05 Jordan Networks - Simple RNN 1:01:43 Backpropagation Through Time 1:02:11 Modeling Sequences with RNN 1:02:54 Measuring Recognizer Performance 1:04:37 Factors Affecting Recognizer Performance 1:04:49 How Good Does it Have to be? 1:06:35 Voice Agents 1:11:17 Natural Language Processing 1:12:11 Machine Translation: Approaches 1:15:17 Statistical Machine Translation 1:18:47 RNN Encoder - Decoder 1:19:42 Neural Machine Translation 1:20:37 RNN Encoder-Decoder Architecture 1:21:05 Attention Mechanism in the Recurrent Decoder 1:21:28 BiRNN Encoder-Decoder with Attention Kognitive Systeme handeln aus der Erkenntnis heraus. Nach der Reizaufnahme durch Perzeptoren werden die Signale verarbeitet und aufgrund einer hinterlegten Wissensbasis gehandelt. In der Vorlesung werden die einzelnen Module eines kognitiven Systems vorgestellt. Hierzu gehören neben der Aufnahme und Verarbeitung von Umweltinformationen (z. B. Bilder, Sprache), die Repräsentation des Wissens sowie die Zuordnung einzelner Merkmale mit Hilfe von Klassifikatoren. Weitere Schwerpunkte der Vorlesung sind Lern- und Planungsmethoden und deren Umsetzung. In den Übungen werden die vorgestellten Methoden durch Aufgaben vertieft. Lehrinhalt: Kognitive Systeme handeln aus der Erkenntnis heraus. Nach der Reizaufnahme durch Perzeptoren werden die Signale verarbeitet und aufgrund einer hinterlegten Wissensbasis gehandelt. In der Vorlesung werden die einzelnen Module eines kognitiven Systems vorgestellt. Hierzu gehören neben der Aufnahme und Verarbeitung von Umweltinformationen (z. B. Bilder, Sprache), die Repräsentation des Wissens sowie die Zuordnung einzelner Merkmale mit Hilfe von Klassifikatoren. Weitere Schwerpunkte der Vorlesung sind Lern- und Planungsmethoden und deren Umsetzung. In den Übungen werden die vorgestellten Methoden durch Aufgaben vertieft.
…
continue reading
16 에피소드
모든 에피소드
×플레이어 FM에 오신것을 환영합니다!
플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.