Artwork

Lukas Biewald에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Lukas Biewald 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Arvind Jain on Building Glean and the Future of Enterprise AI

43:41
 
공유
 

Manage episode 498422819 series 3011550
Lukas Biewald에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Lukas Biewald 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

In this episode of Gradient Dissent, Lukas Biewald sits down with Arvind Jain, CEO and founder of Glean. They discuss Glean's evolution from solving enterprise search to building agentic AI tools that understand internal knowledge and workflows. Arvind shares how his early use of transformer models in 2019 laid the foundation for Glean’s success, well before the term "generative AI" was mainstream.

They explore the technical and organizational challenges behind enterprise LLMs—including security, hallucination suppression—and when it makes sense to fine-tune models. Arvind also reflects on his previous startup Rubrik and explains how Glean’s AI platform aims to reshape how teams operate, from personalized agents to ever-fresh internal documentation.

Follow Arvind Jain: https://x.com/jainarvind

Follow Weights & Biases: https://x.com/weights_biases

Timestamps:

[00:01:00] What Glean is and how it works

[00:02:39] Starting Glean before the LLM boom

[00:04:10] Using transformers early in enterprise search

[00:06:48] Semantic search vs. generative answers

[00:08:13] When to fine-tune vs. use out-of-box models

[00:12:38] The value of small, purpose-trained models

[00:13:04] Enterprise security and embedding risks

[00:16:31] Lessons from Rubrik and starting Glean

[00:19:31] The contrarian bet on enterprise search

[00:22:57] Culture and lessons learned from Google

[00:25:13] Everyone will have their own AI-powered "team"

[00:28:43] Using AI to keep documentation evergreen

[00:31:22] AI-generated churn and risk analysis

[00:33:55] Measuring model improvement with golden sets

[00:36:05] Suppressing hallucinations with citations

[00:39:22] Agents that can ping humans for help

[00:40:41] AI as a force multiplier, not a replacement

[00:42:26] The enduring value of hard work

  continue reading

128 에피소드

Artwork
icon공유
 
Manage episode 498422819 series 3011550
Lukas Biewald에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Lukas Biewald 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

In this episode of Gradient Dissent, Lukas Biewald sits down with Arvind Jain, CEO and founder of Glean. They discuss Glean's evolution from solving enterprise search to building agentic AI tools that understand internal knowledge and workflows. Arvind shares how his early use of transformer models in 2019 laid the foundation for Glean’s success, well before the term "generative AI" was mainstream.

They explore the technical and organizational challenges behind enterprise LLMs—including security, hallucination suppression—and when it makes sense to fine-tune models. Arvind also reflects on his previous startup Rubrik and explains how Glean’s AI platform aims to reshape how teams operate, from personalized agents to ever-fresh internal documentation.

Follow Arvind Jain: https://x.com/jainarvind

Follow Weights & Biases: https://x.com/weights_biases

Timestamps:

[00:01:00] What Glean is and how it works

[00:02:39] Starting Glean before the LLM boom

[00:04:10] Using transformers early in enterprise search

[00:06:48] Semantic search vs. generative answers

[00:08:13] When to fine-tune vs. use out-of-box models

[00:12:38] The value of small, purpose-trained models

[00:13:04] Enterprise security and embedding risks

[00:16:31] Lessons from Rubrik and starting Glean

[00:19:31] The contrarian bet on enterprise search

[00:22:57] Culture and lessons learned from Google

[00:25:13] Everyone will have their own AI-powered "team"

[00:28:43] Using AI to keep documentation evergreen

[00:31:22] AI-generated churn and risk analysis

[00:33:55] Measuring model improvement with golden sets

[00:36:05] Suppressing hallucinations with citations

[00:39:22] Agents that can ping humans for help

[00:40:41] AI as a force multiplier, not a replacement

[00:42:26] The enduring value of hard work

  continue reading

128 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생