Artwork

Jason Edwards에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Jason Edwards 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Episode 35 — Transparency and Explainability

31:10
 
공유
 

Manage episode 505486186 series 3689029
Jason Edwards에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Jason Edwards 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

AI systems are powerful, but when their outputs cannot be understood, they risk losing trust. This episode explores transparency and explainability as core qualities for responsible AI. We begin by distinguishing between transparency — openness about how systems are designed and trained — and explainability, which focuses on how specific decisions or predictions are made. White-box models like decision trees and linear regression are contrasted with black-box systems like deep neural networks, which achieve high accuracy but resist easy interpretation. Post-hoc techniques such as LIME and SHAP are introduced as tools for interpreting complex models, while documentation practices like model cards and datasheets add accountability.

We also consider why explainability matters in practice. In healthcare, clinicians need to understand AI recommendations for patient safety. In finance, lending models must be explainable to comply with laws that protect consumers from discrimination. In government, algorithmic decisions that affect rights and opportunities must be transparent to uphold democratic accountability. Challenges include balancing interpretability with performance, ensuring explanations are meaningful to non-technical users, and avoiding superficial “explanations” that obscure deeper problems. By the end, listeners will understand that transparency and explainability are not optional extras — they are prerequisites for building AI systems that are trustworthy, auditable, and aligned with human values. Produced by BareMetalCyber.com, where you’ll find more cyber prepcasts, books, and information to strengthen your certification path.

  continue reading

48 에피소드

Artwork
icon공유
 
Manage episode 505486186 series 3689029
Jason Edwards에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Jason Edwards 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

AI systems are powerful, but when their outputs cannot be understood, they risk losing trust. This episode explores transparency and explainability as core qualities for responsible AI. We begin by distinguishing between transparency — openness about how systems are designed and trained — and explainability, which focuses on how specific decisions or predictions are made. White-box models like decision trees and linear regression are contrasted with black-box systems like deep neural networks, which achieve high accuracy but resist easy interpretation. Post-hoc techniques such as LIME and SHAP are introduced as tools for interpreting complex models, while documentation practices like model cards and datasheets add accountability.

We also consider why explainability matters in practice. In healthcare, clinicians need to understand AI recommendations for patient safety. In finance, lending models must be explainable to comply with laws that protect consumers from discrimination. In government, algorithmic decisions that affect rights and opportunities must be transparent to uphold democratic accountability. Challenges include balancing interpretability with performance, ensuring explanations are meaningful to non-technical users, and avoiding superficial “explanations” that obscure deeper problems. By the end, listeners will understand that transparency and explainability are not optional extras — they are prerequisites for building AI systems that are trustworthy, auditable, and aligned with human values. Produced by BareMetalCyber.com, where you’ll find more cyber prepcasts, books, and information to strengthen your certification path.

  continue reading

48 에피소드

Все серии

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생