Artwork

Jason Edwards에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Jason Edwards 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Episode 33 — Bias and Fairness in AI

25:50
 
공유
 

Manage episode 505486184 series 3689029
Jason Edwards에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Jason Edwards 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

No issue highlights AI’s societal impact more sharply than bias and fairness. This episode begins by defining bias in AI systems and tracing its sources to data, algorithms, and human choices. We explore data bias, such as underrepresentation of certain groups, and algorithmic bias, where optimization reinforces inequities. Examples include facial recognition systems with unequal error rates, hiring algorithms reproducing gender or racial bias, and predictive policing that amplifies systemic inequalities. These cases show how AI can unintentionally reflect and magnify existing social problems, undermining trust and fairness.

We then shift to the methods and principles for addressing bias. Technical strategies include balancing datasets, adjusting algorithms with fairness constraints, and post-processing results to improve equity. Governance approaches involve transparency practices like datasheets and model cards, accountability frameworks, and independent audits. Fairness is not universal, so cultural and legal contexts shape what equitable AI looks like across different societies. Ultimately, fairness in AI is not just a technical problem but a moral and political challenge. By the end of this episode, listeners will appreciate that mitigating bias requires vigilance, interdisciplinary cooperation, and commitment to building systems that serve all users equitably. Produced by BareMetalCyber.com, where you’ll find more cyber prepcasts, books, and information to strengthen your certification path.

  continue reading

49 에피소드

Artwork
icon공유
 
Manage episode 505486184 series 3689029
Jason Edwards에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Jason Edwards 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

No issue highlights AI’s societal impact more sharply than bias and fairness. This episode begins by defining bias in AI systems and tracing its sources to data, algorithms, and human choices. We explore data bias, such as underrepresentation of certain groups, and algorithmic bias, where optimization reinforces inequities. Examples include facial recognition systems with unequal error rates, hiring algorithms reproducing gender or racial bias, and predictive policing that amplifies systemic inequalities. These cases show how AI can unintentionally reflect and magnify existing social problems, undermining trust and fairness.

We then shift to the methods and principles for addressing bias. Technical strategies include balancing datasets, adjusting algorithms with fairness constraints, and post-processing results to improve equity. Governance approaches involve transparency practices like datasheets and model cards, accountability frameworks, and independent audits. Fairness is not universal, so cultural and legal contexts shape what equitable AI looks like across different societies. Ultimately, fairness in AI is not just a technical problem but a moral and political challenge. By the end of this episode, listeners will appreciate that mitigating bias requires vigilance, interdisciplinary cooperation, and commitment to building systems that serve all users equitably. Produced by BareMetalCyber.com, where you’ll find more cyber prepcasts, books, and information to strengthen your certification path.

  continue reading

49 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생