Artwork

Travis Lawrence에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Travis Lawrence 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

The Analytics Engine for All Your Data with Justin Borgman @ Starburst

36:12
 
공유
 

Manage episode 322817537 series 2881014
Travis Lawrence에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Travis Lawrence 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

In this episode we speak with Justin Borgman, Chairman & CEO at Starburst, which is based on open source Trino (formerly PrestoSQL) and was recently valued at $3.35 billion after securing their series D funding. In this episode we discuss convergence of DW’s / DL's, why data lakes fail and much much more.

Top 3 takeaways

  • The data mesh architecture is gaining adoption more quickly in Europe due to GDPR.
  • There were two main limitations of data lakes when comparing to DW’s, performance and CRUD operations. Performance has been resolved with query engines like Starburst and tools like Apache Iceberg, Apache Hudi and Delta Lake are starting to close the gap with CRUD operations.
  • The principle of a single source of truth / storing everything in a single DL or DW is not always feasible or possible depending on regulations. Starburst is bridging that gap and enabling data mesh and data fabric architectures.
  continue reading

43 에피소드

Artwork
icon공유
 
Manage episode 322817537 series 2881014
Travis Lawrence에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Travis Lawrence 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

In this episode we speak with Justin Borgman, Chairman & CEO at Starburst, which is based on open source Trino (formerly PrestoSQL) and was recently valued at $3.35 billion after securing their series D funding. In this episode we discuss convergence of DW’s / DL's, why data lakes fail and much much more.

Top 3 takeaways

  • The data mesh architecture is gaining adoption more quickly in Europe due to GDPR.
  • There were two main limitations of data lakes when comparing to DW’s, performance and CRUD operations. Performance has been resolved with query engines like Starburst and tools like Apache Iceberg, Apache Hudi and Delta Lake are starting to close the gap with CRUD operations.
  • The principle of a single source of truth / storing everything in a single DL or DW is not always feasible or possible depending on regulations. Starburst is bridging that gap and enabling data mesh and data fabric architectures.
  continue reading

43 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생