Artwork

Breaking Math, Gabriel Hesch, and Autumn Phaneuf에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Breaking Math, Gabriel Hesch, and Autumn Phaneuf 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

90. LEAN Theorem Provers used to model Physics and Chemistry

47:26
 
공유
 

Manage episode 406825258 series 2462838
Breaking Math, Gabriel Hesch, and Autumn Phaneuf에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Breaking Math, Gabriel Hesch, and Autumn Phaneuf 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

This episode is inspired by a correspondence the Breaking Math Podcast had with the editors of Digital Discovery, a journal by the Royal Society of Chemistry. In this episode the hosts review a paper about how the Lean Interactive Theorem Prover, which is usually used as a tool in creating mathemtics proofs, can be used to create rigorous and robust models in physics and chemistry.

Also - we have a brand new member of the Breaking Math Team! This episode is the debut episode for Autumn, CEO of Cosmo Labs, occasional co-host / host of the Breaking Math Podcast, and overall contributor who has been working behind the scenes on the podcast on branding and content for the last several months. Welcome Autumn!

Autumn and Gabe discuss how the paper explores the use of interactive theorem provers to ensure the accuracy of scientific theories and make them machine-readable. The episode discusses the limitations and potential of interactive theorem provers and highlights the themes of precision and formal verification in scientific knowledge. This episode also provide resources (listed below) for listeners interested in learning more about working with the LEAN interactive theorem prover.

Takeaways

  • Interactive theorem provers can revolutionize the way scientific theories are formulated and verified, ensuring mathematical certainty and minimizing errors.
  • Interactive theorem provers require a high level of mathematical knowledge and may not be accessible to all scientists and engineers.
  • Formal verification using interactive theorem provers can eliminate human error and hidden assumptions, leading to more confident and reliable scientific findings.
  • Interactive theorem provers promote clear communication and collaboration across disciplines by forcing explicit definitions and minimizing ambiguities in scientific language. Lean Theorem Provers enable scientists to construct modular and reusable proofs, accelerating the pace of knowledge acquisition.
  • Formal verification presents challenges in terms of transforming informal proofs into a formal language and bridging the reality gap.
  • Integration of theorem provers and machine learning has the potential to enhance creativity, verification, and usefulness of machine learning models.
  • The limitations and variables in formal verification require rigorous validation against experimental data to ensure real-world accuracy.
  • Lean Theorem Provers have the potential to provide unwavering trust, accelerate innovation, and increase accessibility in scientific research.
  • AI as a scientific partner can automate the formalization of informal theories and suggest new conjectures, revolutionizing scientific exploration.
  • The impact of Lean Theorem Provers on humanity includes a shift in scientific validity, rapid scientific breakthroughs, and democratization of science.

Help Support The Podcast by clicking on the links below:

  continue reading

124 에피소드

Artwork
icon공유
 
Manage episode 406825258 series 2462838
Breaking Math, Gabriel Hesch, and Autumn Phaneuf에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Breaking Math, Gabriel Hesch, and Autumn Phaneuf 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

This episode is inspired by a correspondence the Breaking Math Podcast had with the editors of Digital Discovery, a journal by the Royal Society of Chemistry. In this episode the hosts review a paper about how the Lean Interactive Theorem Prover, which is usually used as a tool in creating mathemtics proofs, can be used to create rigorous and robust models in physics and chemistry.

Also - we have a brand new member of the Breaking Math Team! This episode is the debut episode for Autumn, CEO of Cosmo Labs, occasional co-host / host of the Breaking Math Podcast, and overall contributor who has been working behind the scenes on the podcast on branding and content for the last several months. Welcome Autumn!

Autumn and Gabe discuss how the paper explores the use of interactive theorem provers to ensure the accuracy of scientific theories and make them machine-readable. The episode discusses the limitations and potential of interactive theorem provers and highlights the themes of precision and formal verification in scientific knowledge. This episode also provide resources (listed below) for listeners interested in learning more about working with the LEAN interactive theorem prover.

Takeaways

  • Interactive theorem provers can revolutionize the way scientific theories are formulated and verified, ensuring mathematical certainty and minimizing errors.
  • Interactive theorem provers require a high level of mathematical knowledge and may not be accessible to all scientists and engineers.
  • Formal verification using interactive theorem provers can eliminate human error and hidden assumptions, leading to more confident and reliable scientific findings.
  • Interactive theorem provers promote clear communication and collaboration across disciplines by forcing explicit definitions and minimizing ambiguities in scientific language. Lean Theorem Provers enable scientists to construct modular and reusable proofs, accelerating the pace of knowledge acquisition.
  • Formal verification presents challenges in terms of transforming informal proofs into a formal language and bridging the reality gap.
  • Integration of theorem provers and machine learning has the potential to enhance creativity, verification, and usefulness of machine learning models.
  • The limitations and variables in formal verification require rigorous validation against experimental data to ensure real-world accuracy.
  • Lean Theorem Provers have the potential to provide unwavering trust, accelerate innovation, and increase accessibility in scientific research.
  • AI as a scientific partner can automate the formalization of informal theories and suggest new conjectures, revolutionizing scientific exploration.
  • The impact of Lean Theorem Provers on humanity includes a shift in scientific validity, rapid scientific breakthroughs, and democratization of science.

Help Support The Podcast by clicking on the links below:

  continue reading

124 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드