Artwork

Benoit Hardy-Vallée에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Benoit Hardy-Vallée 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Achieving Fairness in Algorithmic Decision Making in HR

29:08
 
공유
 

Manage episode 354749391 series 3428014
Benoit Hardy-Vallée에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Benoit Hardy-Vallée 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Join us on this episode as we dive into the complex world of algorithmic fairness in HR with Manish Raghavan, Assistant Professor of Information Technology at the MIT Sloan School of Management. Discover the challenges and opportunities of using algorithms to make decisions about people, and learn about the importance of preventing algorithms from replicating discriminatory and unfair human decision-making. Get insights into the distinction between procedural fairness and outcome fairness, and understand why the deployment environment of a machine learning model is just as crucial as the technology itself. Gain a deeper understanding of the scoring mechanism behind algorithmic tools, and the potential dangers and consequences of their use. Learn how common signals in assessments can result in similar assessments across organizations and what it takes to achieve fairness in algorithmic decision-making in HR.
Manish page at MIT
Follow Manish on LinkedIn

  continue reading

42 에피소드

Artwork
icon공유
 
Manage episode 354749391 series 3428014
Benoit Hardy-Vallée에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Benoit Hardy-Vallée 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Join us on this episode as we dive into the complex world of algorithmic fairness in HR with Manish Raghavan, Assistant Professor of Information Technology at the MIT Sloan School of Management. Discover the challenges and opportunities of using algorithms to make decisions about people, and learn about the importance of preventing algorithms from replicating discriminatory and unfair human decision-making. Get insights into the distinction between procedural fairness and outcome fairness, and understand why the deployment environment of a machine learning model is just as crucial as the technology itself. Gain a deeper understanding of the scoring mechanism behind algorithmic tools, and the potential dangers and consequences of their use. Learn how common signals in assessments can result in similar assessments across organizations and what it takes to achieve fairness in algorithmic decision-making in HR.
Manish page at MIT
Follow Manish on LinkedIn

  continue reading

42 에피소드

ทุกตอน

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드