Artwork

Hugo Bowne-Anderson에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Hugo Bowne-Anderson 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Episode 53: Human-Seeded Evals & Self-Tuning Agents: Samuel Colvin on Shipping Reliable LLMs

44:49
 
공유
 

Manage episode 493244860 series 3317544
Hugo Bowne-Anderson에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Hugo Bowne-Anderson 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Demos are easy; durability is hard. Samuel Colvin has spent a decade building guardrails in Python (first with Pydantic, now with Logfire), and he’s convinced most LLM failures have nothing to do with the model itself. They appear where the data is fuzzy, the prompts drift, or no one bothered to measure real-world behavior. Samuel joins me to show how a sprinkle of engineering discipline keeps those failures from ever reaching users.

We talk through:
• Tiny labels, big leverage: how five thumbs-ups/thumbs-downs are enough for Logfire to build a rubric that scores every call in real time
• Drift alarms, not dashboards: catching the moment your prompt or data shifts instead of reading charts after the fact
• Prompt self-repair: a prototype agent that rewrites its own system prompt—and tells you when it still doesn’t have what it needs
• The hidden cost curve: why the last 15 percent of reliability costs far more than the flashy 85 percent demo
• Business-first metrics: shipping features that meet real goals instead of chasing another decimal point of “accuracy”

If you’re past the proof-of-concept stage and staring down the “now it has to work” cliff, this episode is your climbing guide.

LINKS

🎓 Learn more:

📺 Watch the video version on YouTube: YouTube link

  continue reading

61 에피소드

Artwork
icon공유
 
Manage episode 493244860 series 3317544
Hugo Bowne-Anderson에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Hugo Bowne-Anderson 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Demos are easy; durability is hard. Samuel Colvin has spent a decade building guardrails in Python (first with Pydantic, now with Logfire), and he’s convinced most LLM failures have nothing to do with the model itself. They appear where the data is fuzzy, the prompts drift, or no one bothered to measure real-world behavior. Samuel joins me to show how a sprinkle of engineering discipline keeps those failures from ever reaching users.

We talk through:
• Tiny labels, big leverage: how five thumbs-ups/thumbs-downs are enough for Logfire to build a rubric that scores every call in real time
• Drift alarms, not dashboards: catching the moment your prompt or data shifts instead of reading charts after the fact
• Prompt self-repair: a prototype agent that rewrites its own system prompt—and tells you when it still doesn’t have what it needs
• The hidden cost curve: why the last 15 percent of reliability costs far more than the flashy 85 percent demo
• Business-first metrics: shipping features that meet real goals instead of chasing another decimal point of “accuracy”

If you’re past the proof-of-concept stage and staring down the “now it has to work” cliff, this episode is your climbing guide.

LINKS

🎓 Learn more:

📺 Watch the video version on YouTube: YouTube link

  continue reading

61 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생