Artwork

TWIML and Sam Charrington에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 TWIML and Sam Charrington 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Inverse Reinforcement Learning Without RL with Gokul Swamy - #643

33:55
 
공유
 

Manage episode 374840206 series 2355587
TWIML and Sam Charrington에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 TWIML and Sam Charrington 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Today we’re joined by Gokul Swamy, a Ph.D. Student at the Robotics Institute at Carnegie Mellon University. In the final conversation of our ICML 2023 series, we sat down with Gokul to discuss his accepted papers at the event, leading off with “Inverse Reinforcement Learning without Reinforcement Learning.” In this paper, Gokul explores the challenges and benefits of inverse reinforcement learning, and the potential and advantages it holds for various applications. Next up, we explore the “Complementing a Policy with a Different Observation Space” paper which applies causal inference techniques to accurately estimate sampling balance and make decisions based on limited observed features. Finally, we touched on “Learning Shared Safety Constraints from Multi-task Demonstrations” which centers on learning safety constraints from demonstrations using the inverse reinforcement learning approach.

The complete show notes for this episode can be found at twimlai.com/go/643.

  continue reading

703 에피소드

Artwork
icon공유
 
Manage episode 374840206 series 2355587
TWIML and Sam Charrington에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 TWIML and Sam Charrington 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Today we’re joined by Gokul Swamy, a Ph.D. Student at the Robotics Institute at Carnegie Mellon University. In the final conversation of our ICML 2023 series, we sat down with Gokul to discuss his accepted papers at the event, leading off with “Inverse Reinforcement Learning without Reinforcement Learning.” In this paper, Gokul explores the challenges and benefits of inverse reinforcement learning, and the potential and advantages it holds for various applications. Next up, we explore the “Complementing a Policy with a Different Observation Space” paper which applies causal inference techniques to accurately estimate sampling balance and make decisions based on limited observed features. Finally, we touched on “Learning Shared Safety Constraints from Multi-task Demonstrations” which centers on learning safety constraints from demonstrations using the inverse reinforcement learning approach.

The complete show notes for this episode can be found at twimlai.com/go/643.

  continue reading

703 에피소드

Semua episod

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드