Artwork

The Twenty Minute VC and Harry Stebbings에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 The Twenty Minute VC and Harry Stebbings 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

20VC: AI Scaling Myths: More Compute is not the Answer | The Core Bottlenecks in AI Today: Data, Algorithms and Compute | The Future of Models: Open vs Closed, Small vs Large with Arvind Narayanan, Professor of Computer Science @ Princeton

51:55
 
공유
 

Manage episode 436599968 series 73567
The Twenty Minute VC and Harry Stebbings에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 The Twenty Minute VC and Harry Stebbings 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Arvind Narayanan is a professor of Computer Science at Princeton and the director of the Center for Information Technology Policy. He is a co-author of the book AI Snake Oil and a big proponent of the AI scaling myths around the importance of just adding more compute. He is also the lead author of a textbook on the computer science of cryptocurrencies which has been used in over 150 courses around the world, and an accompanying Coursera course that has had over 700,000 learners.

In Today's Episode with Arvind Narayanan We Discuss:

1. Compute, Data, Algorithms: What is the Bottleneck:

  • Why does Arvind disagree with the commonly held notion that more compute will result in an equal and continuous level of model performance improvement?
  • Will we continue to see players move into the compute layer in the need to internalise the margin? What does that mean for Nvidia?
  • Why does Arvind not believe that data is the bottleneck? How does Arvind analyse the future of synthetic data? Where is it useful? Where is it not?

2. The Future of Models:

  • Does Arvind agree that this is the fastest commoditization of a technology he has seen?
  • How does Arvind analyse the future of the model landscape? Will we see a world of few very large models or a world of many unbundled and verticalised models?
  • Where does Arvind believe the most value will accrue in the model layer?
  • Is it possible for smaller companies or university research institutions to even play in the model space given the intense cash needed to fund model development?

3. Education, Healthcare and Misinformation: When AI Goes Wrong:

  • What are the single biggest dangers that AI poses to society today?
  • To what extent does Arvind believe misinformation through generative AI is going to be a massive problem in democracies and misinformation?
  • How does Arvind analyse AI impacting the future of education? What does he believe everyone gets wrong about AI and education?
  • Does Arvind agree that AI will be able to put a doctor in everyone's pocket? Where does he believe this theory is weak and falls down?

  continue reading

1232 에피소드

Artwork
icon공유
 
Manage episode 436599968 series 73567
The Twenty Minute VC and Harry Stebbings에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 The Twenty Minute VC and Harry Stebbings 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Arvind Narayanan is a professor of Computer Science at Princeton and the director of the Center for Information Technology Policy. He is a co-author of the book AI Snake Oil and a big proponent of the AI scaling myths around the importance of just adding more compute. He is also the lead author of a textbook on the computer science of cryptocurrencies which has been used in over 150 courses around the world, and an accompanying Coursera course that has had over 700,000 learners.

In Today's Episode with Arvind Narayanan We Discuss:

1. Compute, Data, Algorithms: What is the Bottleneck:

  • Why does Arvind disagree with the commonly held notion that more compute will result in an equal and continuous level of model performance improvement?
  • Will we continue to see players move into the compute layer in the need to internalise the margin? What does that mean for Nvidia?
  • Why does Arvind not believe that data is the bottleneck? How does Arvind analyse the future of synthetic data? Where is it useful? Where is it not?

2. The Future of Models:

  • Does Arvind agree that this is the fastest commoditization of a technology he has seen?
  • How does Arvind analyse the future of the model landscape? Will we see a world of few very large models or a world of many unbundled and verticalised models?
  • Where does Arvind believe the most value will accrue in the model layer?
  • Is it possible for smaller companies or university research institutions to even play in the model space given the intense cash needed to fund model development?

3. Education, Healthcare and Misinformation: When AI Goes Wrong:

  • What are the single biggest dangers that AI poses to society today?
  • To what extent does Arvind believe misinformation through generative AI is going to be a massive problem in democracies and misinformation?
  • How does Arvind analyse AI impacting the future of education? What does he believe everyone gets wrong about AI and education?
  • Does Arvind agree that AI will be able to put a doctor in everyone's pocket? Where does he believe this theory is weak and falls down?

  continue reading

1232 에피소드

Todos os episódios

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드