Artwork

Valentino Stoll, Joe Leo, Valentino Stoll, and Joe Leo에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Valentino Stoll, Joe Leo, Valentino Stoll, and Joe Leo 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

The Latent Spark: Carmine Paolino on Ruby’s AI Reboot

52:26
 
공유
 

Manage episode 520086370 series 3642718
Valentino Stoll, Joe Leo, Valentino Stoll, and Joe Leo에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Valentino Stoll, Joe Leo, Valentino Stoll, and Joe Leo 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

In this episode of the Ruby AI Podcast, hosts Joe Leo and his co-host interview Carmine Paolino, the developer behind Ruby LLM. The discussion covers the significant strides and rapid adoption of Ruby LLM since its release, rooted in Paolino's philosophy of building simple, effective, and adaptable tools. The podcast delves into the nuances of upgrading Ruby LLM, its ever-expanding functionality, and the core principles driving its design. Paolino reflects on the personal motivations and community-driven contributions that have propelled the project to over 3.6 million downloads. Key topics include the philosophy of progressive disclosure, the challenges of multi-agent systems in AI, and innovative ways to manage contexts in LLMs. The episode also touches on improving Ruby’s concurrency handling using Async and Rectors, the future of AI app development in Ruby, and practical advice for developers leveraging AI in their applications.
00:00 Introduction and Guest Welcome
00:39 Depend Bot Upgrade Concerns
01:22 Ruby LLM's Success and Philosophy
05:03 Progressive Disclosure and Model Registry
08:32 Challenges with Provider Mechanisms
16:55 Multi-Agent AI Assisted Development
27:09 Understanding Context Limitations in LLMs
28:20 Exploring Context Engineering in Ruby LLM
29:27 Benchmarking and Evaluation in Ruby LLM
30:34 The Role of Agents in Ruby LLM
39:09 The Future of AI Apps with Ruby
39:58 Async and Ruby: Enhancing Performance
45:12 Practical Applications and Challenges
49:01 Conclusion and Final Thoughts

  continue reading

챕터

1. The Latent Spark: Carmine Paolino on Ruby’s AI Reboot (00:00:00)

2. Depend Bot Upgrade Concerns (00:00:39)

3. Ruby LLM's Success and Philosophy (00:01:22)

4. Progressive Disclosure and Model Registry (00:05:03)

5. Challenges with Provider Mechanisms (00:08:32)

6. Multi-Agent AI Assisted Development (00:16:55)

7. Understanding Context Limitations in LLMs (00:27:09)

8. Exploring Context Engineering in Ruby LLM (00:28:20)

9. Benchmarking and Evaluation in Ruby LLM (00:29:27)

10. The Role of Agents in Ruby LLM (00:30:34)

11. The Future of AI Apps with Ruby (00:39:09)

12. Async and Ruby: Enhancing Performance (00:39:58)

13. Practical Applications and Challenges (00:45:12)

14. Conclusion and Final Thoughts (00:49:01)

12 에피소드

Artwork
icon공유
 
Manage episode 520086370 series 3642718
Valentino Stoll, Joe Leo, Valentino Stoll, and Joe Leo에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Valentino Stoll, Joe Leo, Valentino Stoll, and Joe Leo 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

In this episode of the Ruby AI Podcast, hosts Joe Leo and his co-host interview Carmine Paolino, the developer behind Ruby LLM. The discussion covers the significant strides and rapid adoption of Ruby LLM since its release, rooted in Paolino's philosophy of building simple, effective, and adaptable tools. The podcast delves into the nuances of upgrading Ruby LLM, its ever-expanding functionality, and the core principles driving its design. Paolino reflects on the personal motivations and community-driven contributions that have propelled the project to over 3.6 million downloads. Key topics include the philosophy of progressive disclosure, the challenges of multi-agent systems in AI, and innovative ways to manage contexts in LLMs. The episode also touches on improving Ruby’s concurrency handling using Async and Rectors, the future of AI app development in Ruby, and practical advice for developers leveraging AI in their applications.
00:00 Introduction and Guest Welcome
00:39 Depend Bot Upgrade Concerns
01:22 Ruby LLM's Success and Philosophy
05:03 Progressive Disclosure and Model Registry
08:32 Challenges with Provider Mechanisms
16:55 Multi-Agent AI Assisted Development
27:09 Understanding Context Limitations in LLMs
28:20 Exploring Context Engineering in Ruby LLM
29:27 Benchmarking and Evaluation in Ruby LLM
30:34 The Role of Agents in Ruby LLM
39:09 The Future of AI Apps with Ruby
39:58 Async and Ruby: Enhancing Performance
45:12 Practical Applications and Challenges
49:01 Conclusion and Final Thoughts

  continue reading

챕터

1. The Latent Spark: Carmine Paolino on Ruby’s AI Reboot (00:00:00)

2. Depend Bot Upgrade Concerns (00:00:39)

3. Ruby LLM's Success and Philosophy (00:01:22)

4. Progressive Disclosure and Model Registry (00:05:03)

5. Challenges with Provider Mechanisms (00:08:32)

6. Multi-Agent AI Assisted Development (00:16:55)

7. Understanding Context Limitations in LLMs (00:27:09)

8. Exploring Context Engineering in Ruby LLM (00:28:20)

9. Benchmarking and Evaluation in Ruby LLM (00:29:27)

10. The Role of Agents in Ruby LLM (00:30:34)

11. The Future of AI Apps with Ruby (00:39:09)

12. Async and Ruby: Enhancing Performance (00:39:58)

13. Practical Applications and Challenges (00:45:12)

14. Conclusion and Final Thoughts (00:49:01)

12 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생