Artwork

Real Python에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Real Python 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Using NumPy and Linear Algebra for Faster Python Code

1:08:37
 
공유
 

Manage episode 356263204 series 2637014
Real Python에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Real Python 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Are you still using loops and lists to process your data in Python? Have you heard of a Python library with optimized data structures and built-in operations that can speed up your data science code? This week on the show, Jodie Burchell, developer advocate for data science at JetBrains, returns to share secrets for harnessing linear algebra and NumPy for your projects.

Jodie details how most people begin their data science journey using loops to iterate over values and apply operations sequentially. We talk about how loops are friendly for beginners, being clear to read and easy to debug, but unfortunately don’t scale well, especially with large amounts of data.

Jodie shares some of the basics of linear algebra and how to organize data into vectors. We talk about how the NumPy library leverages those concepts to improve data processing. We discuss how the library includes operations for vector and matrix addition and subtraction, and why these operations are more efficient than loops. We also cover how NumPy stores arrays in memory and when working with them is faster vs when it’s not.

Course Spotlight: Data Cleaning With pandas and NumPy

In this video course, you’ll learn how to clean up messy data using pandas and NumPy. You’ll become equipped to deal with a range of problems, such as missing values, inconsistent formatting, malformed records, and nonsensical outliers.

Topics:

  • 00:00:00 – Introduction
  • 00:02:35 – Vectorize all the things! - PyCon UK 2022 Talk
  • 00:06:39 – Becoming familiar with linear algebra
  • 00:09:05 – Beginners start with loops
  • 00:11:25 – Starting with basic linear algebra
  • 00:12:25 – The basic unit of a vector
  • 00:18:06 – NumPy representing vectors in Python
  • 00:23:25 – Sponsor: InfluxDB
  • 00:24:13 – Block management
  • 00:25:54 – Replacing a loop with vector-based operations
  • 00:34:06 – NumPy broadcasting
  • 00:38:52 – Approximating nearest neighbors
  • 00:43:49 – Video Course Spotlight
  • 00:45:15 – Solving the problem
  • 00:46:44 – Getting rid of nested loops
  • 00:48:54 – A peek under the hood
  • 00:53:28 – How arrays vs lists are stored in memory
  • 01:00:24 – Considering a GPU
  • 01:03:37 – Real Python resources on the subject
  • 01:04:08 – Upcoming talks and conferences
  • 01:07:31 – Thanks and goodbye

Show Links:

Level up your Python skills with our expert-led courses:

Support the podcast & join our community of Pythonistas

  continue reading

252 에피소드

Artwork
icon공유
 
Manage episode 356263204 series 2637014
Real Python에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Real Python 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Are you still using loops and lists to process your data in Python? Have you heard of a Python library with optimized data structures and built-in operations that can speed up your data science code? This week on the show, Jodie Burchell, developer advocate for data science at JetBrains, returns to share secrets for harnessing linear algebra and NumPy for your projects.

Jodie details how most people begin their data science journey using loops to iterate over values and apply operations sequentially. We talk about how loops are friendly for beginners, being clear to read and easy to debug, but unfortunately don’t scale well, especially with large amounts of data.

Jodie shares some of the basics of linear algebra and how to organize data into vectors. We talk about how the NumPy library leverages those concepts to improve data processing. We discuss how the library includes operations for vector and matrix addition and subtraction, and why these operations are more efficient than loops. We also cover how NumPy stores arrays in memory and when working with them is faster vs when it’s not.

Course Spotlight: Data Cleaning With pandas and NumPy

In this video course, you’ll learn how to clean up messy data using pandas and NumPy. You’ll become equipped to deal with a range of problems, such as missing values, inconsistent formatting, malformed records, and nonsensical outliers.

Topics:

  • 00:00:00 – Introduction
  • 00:02:35 – Vectorize all the things! - PyCon UK 2022 Talk
  • 00:06:39 – Becoming familiar with linear algebra
  • 00:09:05 – Beginners start with loops
  • 00:11:25 – Starting with basic linear algebra
  • 00:12:25 – The basic unit of a vector
  • 00:18:06 – NumPy representing vectors in Python
  • 00:23:25 – Sponsor: InfluxDB
  • 00:24:13 – Block management
  • 00:25:54 – Replacing a loop with vector-based operations
  • 00:34:06 – NumPy broadcasting
  • 00:38:52 – Approximating nearest neighbors
  • 00:43:49 – Video Course Spotlight
  • 00:45:15 – Solving the problem
  • 00:46:44 – Getting rid of nested loops
  • 00:48:54 – A peek under the hood
  • 00:53:28 – How arrays vs lists are stored in memory
  • 01:00:24 – Considering a GPU
  • 01:03:37 – Real Python resources on the subject
  • 01:04:08 – Upcoming talks and conferences
  • 01:07:31 – Thanks and goodbye

Show Links:

Level up your Python skills with our expert-led courses:

Support the podcast & join our community of Pythonistas

  continue reading

252 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생