Artwork

Real Python에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Real Python 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Speeding Up Your DataFrames With Polars

57:57
 
공유
 

Manage episode 353028026 series 2637014
Real Python에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Real Python 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

How can you get more performance from your existing data science infrastructure? What if a DataFrame library could take advantage of your machine’s available cores and provide built-in methods for handling larger-than-RAM datasets? This week on the show, Liam Brannigan is here to discuss Polars.

Liam is an experienced data scientist working in finance, technology, and environmental analysis. He’s recently started contributing to the documentation for Polars and developing a training course for the library.

We talk about the library’s overall speed and lack of additional dependencies. Liam explains the advantages of lazy vs eager mode and which to choose when performing data exploration or attempting to load a dataset larger than your RAM.

We also discuss potential barriers to switching to Polars from a pandas workflow. Across our conversation, we explore several other libraries and technologies, including Apache Arrow, DuckDB, query optimization, and the “rustification” of Python tools.

Course Spotlight: Graph Your Data With Python and ggplot

In this course, you’ll learn how to use ggplot in Python to build data visualizations with plotnine. You’ll discover what a grammar of graphics is and how it can help you create plots in a very concise and consistent way.

Show Topics:

  • 00:00:00 – Introduction
  • 00:02:06 – Liam’s background and intro to Polars
  • 00:03:37 – Hurdles to switching to Polars
  • 00:05:23 – Creating training resources
  • 00:08:15 – No index
  • 00:09:46 – Data science 2025 predictions
  • 00:12:02 – Contributions to Polars
  • 00:15:07 – Eager vs lazy mode & query optimization
  • 00:19:25 – Sponsor: Anaconda Nucleus
  • 00:20:00 – Apache Arrow and parquet
  • 00:24:43 – DuckDB and column orientation
  • 00:29:27 – The “rustification” of libraries
  • 00:34:49 – Video Course Spotlight
  • 00:36:16 – GPUs and memory requirements
  • 00:45:49 – No additional library requirements
  • 00:47:37 – Development of the ecosystem
  • 00:51:33 – Chaining operations
  • 00:53:39 – How can people follow your work?
  • 00:54:51 – What are you excited about in the world of Python?
  • 00:56:09 – What do you want to learn next?
  • 00:56:58 – Thanks and goodbye

Show Links:

Level up your Python skills with our expert-led courses:

Support the podcast & join our community of Pythonistas

  continue reading

277 에피소드

Artwork
icon공유
 
Manage episode 353028026 series 2637014
Real Python에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Real Python 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

How can you get more performance from your existing data science infrastructure? What if a DataFrame library could take advantage of your machine’s available cores and provide built-in methods for handling larger-than-RAM datasets? This week on the show, Liam Brannigan is here to discuss Polars.

Liam is an experienced data scientist working in finance, technology, and environmental analysis. He’s recently started contributing to the documentation for Polars and developing a training course for the library.

We talk about the library’s overall speed and lack of additional dependencies. Liam explains the advantages of lazy vs eager mode and which to choose when performing data exploration or attempting to load a dataset larger than your RAM.

We also discuss potential barriers to switching to Polars from a pandas workflow. Across our conversation, we explore several other libraries and technologies, including Apache Arrow, DuckDB, query optimization, and the “rustification” of Python tools.

Course Spotlight: Graph Your Data With Python and ggplot

In this course, you’ll learn how to use ggplot in Python to build data visualizations with plotnine. You’ll discover what a grammar of graphics is and how it can help you create plots in a very concise and consistent way.

Show Topics:

  • 00:00:00 – Introduction
  • 00:02:06 – Liam’s background and intro to Polars
  • 00:03:37 – Hurdles to switching to Polars
  • 00:05:23 – Creating training resources
  • 00:08:15 – No index
  • 00:09:46 – Data science 2025 predictions
  • 00:12:02 – Contributions to Polars
  • 00:15:07 – Eager vs lazy mode & query optimization
  • 00:19:25 – Sponsor: Anaconda Nucleus
  • 00:20:00 – Apache Arrow and parquet
  • 00:24:43 – DuckDB and column orientation
  • 00:29:27 – The “rustification” of libraries
  • 00:34:49 – Video Course Spotlight
  • 00:36:16 – GPUs and memory requirements
  • 00:45:49 – No additional library requirements
  • 00:47:37 – Development of the ecosystem
  • 00:51:33 – Chaining operations
  • 00:53:39 – How can people follow your work?
  • 00:54:51 – What are you excited about in the world of Python?
  • 00:56:09 – What do you want to learn next?
  • 00:56:58 – Thanks and goodbye

Show Links:

Level up your Python skills with our expert-led courses:

Support the podcast & join our community of Pythonistas

  continue reading

277 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생