Artwork

Dan Holme에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Dan Holme 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Entangling Quantum Memories in Massachusetts, with Can Knaut, Harvard University.

1:03:27
 
공유
 

Manage episode 429130410 series 3481493
Dan Holme에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Dan Holme 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

In this episode of The Quantum Divide, host Dan welcomes Can Knaut from Harvard University, a doctoral researcher working in the lab of Mikhail Lukin, a prominent figure in the field of neutral atoms. Can shares insights into his academic journey, which took a unique turn from business and economics in Switzerland to experimental quantum physics at ETH Zurich and eventually led him to Harvard.

The discussion centres around Can's research on quantum networks, particularly a recently published paper detailing the entanglement of two non-local qubits using a single photon in the network. This achievement, realized in collaboration with Amazon Web Services, marks a significant advancement in the field. Can explains the innovative method used to store entanglement and provide memory, setting the stage for practical applications of quantum networks.

Can provides an overview of his day-to-day work in the Lukin lab, emphasizing the collaborative environment and the importance of both theoretical and experimental approaches. He highlights the benefits of being part of a large, diverse team and the support provided by the Harvard Quantum Initiative, which fosters interdisciplinary research and education in quantum science.

Listeners will gain an understanding of the use of silicon vacancy centres in diamond nanophotonic systems and the unique properties that make these systems ideal for quantum information tasks. Can also touches on the broader implications of quantum networks, such as secure communication and the potential to link smaller quantum processors into more powerful quantum computers.

Tune in to hear about the latest advancements in quantum networks, the collaborative efforts driving this research forward, and the future possibilities this technology holds.

  continue reading

32 에피소드

Artwork
icon공유
 
Manage episode 429130410 series 3481493
Dan Holme에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Dan Holme 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

In this episode of The Quantum Divide, host Dan welcomes Can Knaut from Harvard University, a doctoral researcher working in the lab of Mikhail Lukin, a prominent figure in the field of neutral atoms. Can shares insights into his academic journey, which took a unique turn from business and economics in Switzerland to experimental quantum physics at ETH Zurich and eventually led him to Harvard.

The discussion centres around Can's research on quantum networks, particularly a recently published paper detailing the entanglement of two non-local qubits using a single photon in the network. This achievement, realized in collaboration with Amazon Web Services, marks a significant advancement in the field. Can explains the innovative method used to store entanglement and provide memory, setting the stage for practical applications of quantum networks.

Can provides an overview of his day-to-day work in the Lukin lab, emphasizing the collaborative environment and the importance of both theoretical and experimental approaches. He highlights the benefits of being part of a large, diverse team and the support provided by the Harvard Quantum Initiative, which fosters interdisciplinary research and education in quantum science.

Listeners will gain an understanding of the use of silicon vacancy centres in diamond nanophotonic systems and the unique properties that make these systems ideal for quantum information tasks. Can also touches on the broader implications of quantum networks, such as secure communication and the potential to link smaller quantum processors into more powerful quantum computers.

Tune in to hear about the latest advancements in quantum networks, the collaborative efforts driving this research forward, and the future possibilities this technology holds.

  continue reading

32 에피소드

Wszystkie odcinki

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드