Player FM 앱으로 오프라인으로 전환하세요!
Why Your ‘Data Exhaust’ Is Your Most Valuable Asset
Manage episode 501602466 series 75006
Rahul Auradkar, executive VP and GM at Salesforce, grew up in India with a deep passion for cricket, where his love for the game sparked an early interest in data. This fascination with statistics laid the foundation for his current work leading Salesforce’s Data Cloud and Einstein (Unified Data Services) team. Auradkar reflects on how structured data has evolved—from relational databases in enterprise applications to data warehouses, data lakes, and lakehouses. He explains how initial efforts focused on analyzing structured data, which later fed back into business processes.
Eventually, businesses realized that the byproducts of data—what he calls "data exhaust"—were themselves valuable. The rise of "old AI," or predictive AI, shifted perceptions, showing that data exhaust could define the application itself. As varied systems emerged with distinct protocols and SQL variants, data silos formed, trapping valuable insights. Auradkar emphasizes that the ongoing challenge is unifying these silos to enable seamless, meaningful business interactions—something Salesforce aims to solve with its Data Cloud and agentic AI platform.
Learn more from The New Stack about the evolution of structured data and agent AI:
How Enterprises and Startups Can Master AI With Smarter Data Practices
Enterprise AI Success Demands Real-Time Data Platforms
Join our community of newsletter subscribers to stay on top of the news and at the top of your game.
Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.
905 에피소드
Manage episode 501602466 series 75006
Rahul Auradkar, executive VP and GM at Salesforce, grew up in India with a deep passion for cricket, where his love for the game sparked an early interest in data. This fascination with statistics laid the foundation for his current work leading Salesforce’s Data Cloud and Einstein (Unified Data Services) team. Auradkar reflects on how structured data has evolved—from relational databases in enterprise applications to data warehouses, data lakes, and lakehouses. He explains how initial efforts focused on analyzing structured data, which later fed back into business processes.
Eventually, businesses realized that the byproducts of data—what he calls "data exhaust"—were themselves valuable. The rise of "old AI," or predictive AI, shifted perceptions, showing that data exhaust could define the application itself. As varied systems emerged with distinct protocols and SQL variants, data silos formed, trapping valuable insights. Auradkar emphasizes that the ongoing challenge is unifying these silos to enable seamless, meaningful business interactions—something Salesforce aims to solve with its Data Cloud and agentic AI platform.
Learn more from The New Stack about the evolution of structured data and agent AI:
How Enterprises and Startups Can Master AI With Smarter Data Practices
Enterprise AI Success Demands Real-Time Data Platforms
Join our community of newsletter subscribers to stay on top of the news and at the top of your game.
Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.
905 에피소드
모든 에피소드
×플레이어 FM에 오신것을 환영합니다!
플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.