Artwork

The New Stack Podcast and The New Stack에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 The New Stack Podcast and The New Stack 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Confronting AI’s Next Big Challenge: Inference Compute

24:14
 
공유
 

Manage episode 498622709 series 75006
The New Stack Podcast and The New Stack에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 The New Stack Podcast and The New Stack 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

While AI training garners most of the spotlight — and investment — the demands ofAI inferenceare shaping up to be an even bigger challenge. In this episode ofThe New Stack Makers, Sid Sheth, founder and CEO of d-Matrix, argues that inference is anything but one-size-fits-all. Different use cases — from low-cost to high-interactivity or throughput-optimized — require tailored hardware, and existing GPU architectures aren’t built to address all these needs simultaneously.

“The world of inference is going to be truly heterogeneous,” Sheth said, meaning specialized hardware will be required to meet diverse performance profiles. A major bottleneck? The distance between memory and compute. Inference, especially in generative AI and agentic workflows, requires constant memory access, so minimizing the distance data must travel is key to improving performance and reducing cost.

To address this, d-Matrix developed Corsair, a modular platform where memory and compute are vertically stacked — “like pancakes” — enabling faster, more efficient inference. The result is scalable, flexible AI infrastructure purpose-built for inference at scale.

Learn more from The New Stack about inference compute and AI

Scaling AI Inference at the Edge with Distributed PostgreSQL

Deep Infra Is Building an AI Inference Cloud for Developers

Join our community of newsletter subscribers to stay on top of the news and at the top of your game

Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.

  continue reading

905 에피소드

Artwork
icon공유
 
Manage episode 498622709 series 75006
The New Stack Podcast and The New Stack에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 The New Stack Podcast and The New Stack 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

While AI training garners most of the spotlight — and investment — the demands ofAI inferenceare shaping up to be an even bigger challenge. In this episode ofThe New Stack Makers, Sid Sheth, founder and CEO of d-Matrix, argues that inference is anything but one-size-fits-all. Different use cases — from low-cost to high-interactivity or throughput-optimized — require tailored hardware, and existing GPU architectures aren’t built to address all these needs simultaneously.

“The world of inference is going to be truly heterogeneous,” Sheth said, meaning specialized hardware will be required to meet diverse performance profiles. A major bottleneck? The distance between memory and compute. Inference, especially in generative AI and agentic workflows, requires constant memory access, so minimizing the distance data must travel is key to improving performance and reducing cost.

To address this, d-Matrix developed Corsair, a modular platform where memory and compute are vertically stacked — “like pancakes” — enabling faster, more efficient inference. The result is scalable, flexible AI infrastructure purpose-built for inference at scale.

Learn more from The New Stack about inference compute and AI

Scaling AI Inference at the Edge with Distributed PostgreSQL

Deep Infra Is Building an AI Inference Cloud for Developers

Join our community of newsletter subscribers to stay on top of the news and at the top of your game

Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.

  continue reading

905 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생