Artwork

Sebastian Hassinger and Kevin Rowney에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Sebastian Hassinger and Kevin Rowney 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Quantum Machine Learning with Jessica Pointing

43:36
 
공유
 

Manage episode 436299981 series 3377506
Sebastian Hassinger and Kevin Rowney에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Sebastian Hassinger and Kevin Rowney 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

In this episode of The New Quantum Era podcast, hosts Sebastian Hassinger and Kevin Roney interview Jessica Pointing, a PhD student at Oxford studying quantum machine learning.

Classical Machine Learning Context

  • Deep learning has made significant progress, as evidenced by the rapid adoption of ChatGPT
  • Neural networks have a bias towards simple functions, which enables them to generalize well on unseen data despite being highly expressive
  • This “simplicity bias” may explain the success of deep learning, defying the traditional bias-variance tradeoff

Quantum Neural Networks (QNNs)

  • QNNs are inspired by classical neural networks but have some key differences
  • The encoding method used to input classical data into a QNN significantly impacts its inductive bias
  • Basic encoding methods like basis encoding result in a QNN with no useful bias, essentially making it a random learner
  • Amplitude encoding can introduce a simplicity bias in QNNs, but at the cost of reduced expressivity
    • Amplitude encoding cannot express certain basic functions like XOR/parity
  • There appears to be a tradeoff between having a good inductive bias and having high expressivity in current QNN frameworks

Implications and Future Directions

  • Current QNN frameworks are unlikely to serve as general purpose learning algorithms that outperform classical neural networks
  • Future research could explore:
    • Discovering new encoding methods that achieve both good inductive bias and high expressivity
    • Identifying specific high-value use cases and tailoring QNNs to those problems
    • Developing entirely new QNN architectures and strategies
  • Evaluating quantum advantage claims requires scrutiny, as current empirical results often rely on comparisons to weak classical baselines or very small-scale experiments

In summary, this insightful interview with Jessica Pointing highlights the current challenges and open questions in quantum machine learning, providing a framework for critically evaluating progress in the field. While the path to quantum advantage in machine learning remains uncertain, ongoing research continues to expand our understanding of the possibilities and limitations of QNNs.

Paper cited in the episode:
Do Quantum Neural Networks have Simplicity Bias?

  continue reading

40 에피소드

Artwork
icon공유
 
Manage episode 436299981 series 3377506
Sebastian Hassinger and Kevin Rowney에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Sebastian Hassinger and Kevin Rowney 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

In this episode of The New Quantum Era podcast, hosts Sebastian Hassinger and Kevin Roney interview Jessica Pointing, a PhD student at Oxford studying quantum machine learning.

Classical Machine Learning Context

  • Deep learning has made significant progress, as evidenced by the rapid adoption of ChatGPT
  • Neural networks have a bias towards simple functions, which enables them to generalize well on unseen data despite being highly expressive
  • This “simplicity bias” may explain the success of deep learning, defying the traditional bias-variance tradeoff

Quantum Neural Networks (QNNs)

  • QNNs are inspired by classical neural networks but have some key differences
  • The encoding method used to input classical data into a QNN significantly impacts its inductive bias
  • Basic encoding methods like basis encoding result in a QNN with no useful bias, essentially making it a random learner
  • Amplitude encoding can introduce a simplicity bias in QNNs, but at the cost of reduced expressivity
    • Amplitude encoding cannot express certain basic functions like XOR/parity
  • There appears to be a tradeoff between having a good inductive bias and having high expressivity in current QNN frameworks

Implications and Future Directions

  • Current QNN frameworks are unlikely to serve as general purpose learning algorithms that outperform classical neural networks
  • Future research could explore:
    • Discovering new encoding methods that achieve both good inductive bias and high expressivity
    • Identifying specific high-value use cases and tailoring QNNs to those problems
    • Developing entirely new QNN architectures and strategies
  • Evaluating quantum advantage claims requires scrutiny, as current empirical results often rely on comparisons to weak classical baselines or very small-scale experiments

In summary, this insightful interview with Jessica Pointing highlights the current challenges and open questions in quantum machine learning, providing a framework for critically evaluating progress in the field. While the path to quantum advantage in machine learning remains uncertain, ongoing research continues to expand our understanding of the possibilities and limitations of QNNs.

Paper cited in the episode:
Do Quantum Neural Networks have Simplicity Bias?

  continue reading

40 에피소드

Усі епізоди

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드