Artwork

MapScaping에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 MapScaping 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Telematics Data is Reshaping Our Understanding of Road Networks

58:52
 
공유
 

Manage episode 460092900 series 2502116
MapScaping에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 MapScaping 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Telematics Data is Reshaping Our Understanding of Road Networks

In this episode MIT Professor Hari Balakrishnan explains how Cambridge Mobile Telematics (CMT) is transforming traditional road network analysis by layering dynamic behavioural data onto static map geometries.

Telematics data creates "living maps" that go beyond traditional road geometry and attributes. By collecting movement data from 45 million users through phones and IoT devices, CMT has developed sophisticated models that can:

- Generate dynamic risk maps showing crash probability for every road segment globally
- Detect infrastructure issues that aren't visible in traditional mapping (like poorly placed bus stops)
- Validate and correct map attributes like speed limits and lane connectivity
- Differentiate between overpasses and intersections using movement patterns
- Create contextual understanding of road segments based on actual usage patterns

Particularly interesting for GIS professionals is CMT's approach to data fusion, combining traditional map geometry with temporal movement data to create predictive models. This has practical applications from infrastructure planning to autonomous vehicle navigation, where understanding the cultural context of road usage proves as important as precise geometry.

The episode challenges traditional static approaches to road network mapping, suggesting that the future lies in dynamic, behavior-informed spatial data models that can adapt to changing conditions and usage patterns.

For anyone working with transportation networks or smart city initiatives, this episode provides valuable insights into how movement data is changing our understanding of road infrastructure and spatial behaviour.

Connect with Hari on LinkedIn!

https://www.linkedin.com/in/hari-balakrishnan-0702263/

Cambridge Mobile Telematics

https://www.cmtelematics.com/

BTW, I keep busy creating free mapping tools and publishing them there

https://mapscaping.com/map-tools/ swing by and take a look!

  continue reading

240 에피소드

Artwork
icon공유
 
Manage episode 460092900 series 2502116
MapScaping에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 MapScaping 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Telematics Data is Reshaping Our Understanding of Road Networks

In this episode MIT Professor Hari Balakrishnan explains how Cambridge Mobile Telematics (CMT) is transforming traditional road network analysis by layering dynamic behavioural data onto static map geometries.

Telematics data creates "living maps" that go beyond traditional road geometry and attributes. By collecting movement data from 45 million users through phones and IoT devices, CMT has developed sophisticated models that can:

- Generate dynamic risk maps showing crash probability for every road segment globally
- Detect infrastructure issues that aren't visible in traditional mapping (like poorly placed bus stops)
- Validate and correct map attributes like speed limits and lane connectivity
- Differentiate between overpasses and intersections using movement patterns
- Create contextual understanding of road segments based on actual usage patterns

Particularly interesting for GIS professionals is CMT's approach to data fusion, combining traditional map geometry with temporal movement data to create predictive models. This has practical applications from infrastructure planning to autonomous vehicle navigation, where understanding the cultural context of road usage proves as important as precise geometry.

The episode challenges traditional static approaches to road network mapping, suggesting that the future lies in dynamic, behavior-informed spatial data models that can adapt to changing conditions and usage patterns.

For anyone working with transportation networks or smart city initiatives, this episode provides valuable insights into how movement data is changing our understanding of road infrastructure and spatial behaviour.

Connect with Hari on LinkedIn!

https://www.linkedin.com/in/hari-balakrishnan-0702263/

Cambridge Mobile Telematics

https://www.cmtelematics.com/

BTW, I keep busy creating free mapping tools and publishing them there

https://mapscaping.com/map-tools/ swing by and take a look!

  continue reading

240 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생