Artwork

BB에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 BB 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

DINOv3 Unlocked: The AI That Just Eliminated Manual Data Annotation FOREVER!

15:53
 
공유
 

Manage episode 501228192 series 3664002
BB에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 BB 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Send us a text

DINOv3 a paper by meta, a significant advancement in self-supervised learning (SSL) for computer vision, emphasizing its ability to create robust and versatile visual representations without relying on extensive human annotations. The research highlights improvements in dense feature maps through a novel "Gram anchoring" strategy, which addresses the issue of performance degradation in dense tasks during extended training. DINOv3 demonstrates state-of-the-art performance across various computer vision applications, including object detection, semantic segmentation, and depth estimation, even outperforming models with supervised pre-training. Furthermore, the paper showcases the generality of DINOv3 by applying its training recipe to geospatial data, achieving strong results on satellite imagery. The text also acknowledges the environmental impact of training such large-scale models and discusses the effective distillation of knowledge from larger 7-billion parameter models into smaller, more efficient variants.

  continue reading

11 에피소드

Artwork
icon공유
 
Manage episode 501228192 series 3664002
BB에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 BB 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Send us a text

DINOv3 a paper by meta, a significant advancement in self-supervised learning (SSL) for computer vision, emphasizing its ability to create robust and versatile visual representations without relying on extensive human annotations. The research highlights improvements in dense feature maps through a novel "Gram anchoring" strategy, which addresses the issue of performance degradation in dense tasks during extended training. DINOv3 demonstrates state-of-the-art performance across various computer vision applications, including object detection, semantic segmentation, and depth estimation, even outperforming models with supervised pre-training. Furthermore, the paper showcases the generality of DINOv3 by applying its training recipe to geospatial data, achieving strong results on satellite imagery. The text also acknowledges the environmental impact of training such large-scale models and discusses the effective distillation of knowledge from larger 7-billion parameter models into smaller, more efficient variants.

  continue reading

11 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생