Artwork

Daniel Bashir에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Daniel Bashir 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Tal Linzen: Psycholinguistics and Language Modeling

1:14:50
 
공유
 

Manage episode 378897745 series 2975159
Daniel Bashir에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Daniel Bashir 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

In episode 93 of The Gradient Podcast, Daniel Bashir speaks to Professor Tal Linzen.

Professor Linzen is an Associate Professor of Linguistics and Data Science at New York University and a Research Scientist at Google. He directs the Computation and Psycholinguistics Lab, where he and his collaborators use behavioral experiments and computational methods to study how people learn and understand language. They also develop methods for evaluating, understanding, and improving computational systems for language processing.

Have suggestions for future podcast guests (or other feedback)? Let us know here or reach us at [email protected]

Subscribe to The Gradient Podcast: Apple Podcasts | Spotify | Pocket Casts | RSSFollow The Gradient on Twitter

Outline:

* (00:00) Intro

* (02:25) Prof. Linzen’s background

* (05:37) Back and forth between psycholinguistics and deep learning research, LM evaluation

* (08:40) How can deep learning successes/failures help us understand human language use, methodological concerns, comparing human representations to LM representations

* (14:22) Behavioral capacities and degrees of freedom in representations

* (16:40) How LMs are becoming less and less like humans

* (19:25) Assessing LSTMs’ ability to learn syntax-sensitive dependencies

* (22:48) Similarities between structure-sensitive dependencies, sophistication of syntactic representations

* (25:30) RNNs implicitly implement tensor-product representations—vector representations of symbolic structures

* (29:45) Representations required to solve certain tasks, difficulty of natural language

* (33:25) Accelerating progress towards human-like linguistic generalization

* (34:30) The pre-training agnostic identically distributed evaluation paradigm

* (39:50) Ways to mitigate differences in evaluation

* (44:20) Surprisal does not explain syntactic disambiguation difficulty

* (45:00) How to measure processing difficulty, predictability and processing difficulty

* (49:20) What other factors influence processing difficulty?

* (53:10) How to plant trees in language models

* (55:45) Architectural influences on generalizing knowledge of linguistic structure

* (58:20) “Cognitively relevant regimes” and speed of generalization

* (1:00:45) Acquisition of syntax and sampling simpler vs. more complex sentences

* (1:04:03) Curriculum learning for progressively more complicated syntax

* (1:05:35) Hypothesizing tree-structured representations

* (1:08:00) Reflecting on a prediction from the past

* (1:10:15) Goals and “the correct direction” in AI research

* (1:14:04) Outro

Links:

* Prof. Linzen’s Twitter and homepage

* Papers

* Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies

* RNNS Implicitly Implement Tensor-Product Representations

* How Can We Accelerate Progress Towards Human-like Linguistic Generalization?

* Surprisal does not explain syntactic disambiguation difficulty: evidence from a large-scale benchmark

* How to Plant Trees in LMs: Data and Architectural Effects on the Emergence of Syntactic Inductive Biases


Get full access to The Gradient at thegradientpub.substack.com/subscribe
  continue reading

150 에피소드

Artwork
icon공유
 
Manage episode 378897745 series 2975159
Daniel Bashir에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Daniel Bashir 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

In episode 93 of The Gradient Podcast, Daniel Bashir speaks to Professor Tal Linzen.

Professor Linzen is an Associate Professor of Linguistics and Data Science at New York University and a Research Scientist at Google. He directs the Computation and Psycholinguistics Lab, where he and his collaborators use behavioral experiments and computational methods to study how people learn and understand language. They also develop methods for evaluating, understanding, and improving computational systems for language processing.

Have suggestions for future podcast guests (or other feedback)? Let us know here or reach us at [email protected]

Subscribe to The Gradient Podcast: Apple Podcasts | Spotify | Pocket Casts | RSSFollow The Gradient on Twitter

Outline:

* (00:00) Intro

* (02:25) Prof. Linzen’s background

* (05:37) Back and forth between psycholinguistics and deep learning research, LM evaluation

* (08:40) How can deep learning successes/failures help us understand human language use, methodological concerns, comparing human representations to LM representations

* (14:22) Behavioral capacities and degrees of freedom in representations

* (16:40) How LMs are becoming less and less like humans

* (19:25) Assessing LSTMs’ ability to learn syntax-sensitive dependencies

* (22:48) Similarities between structure-sensitive dependencies, sophistication of syntactic representations

* (25:30) RNNs implicitly implement tensor-product representations—vector representations of symbolic structures

* (29:45) Representations required to solve certain tasks, difficulty of natural language

* (33:25) Accelerating progress towards human-like linguistic generalization

* (34:30) The pre-training agnostic identically distributed evaluation paradigm

* (39:50) Ways to mitigate differences in evaluation

* (44:20) Surprisal does not explain syntactic disambiguation difficulty

* (45:00) How to measure processing difficulty, predictability and processing difficulty

* (49:20) What other factors influence processing difficulty?

* (53:10) How to plant trees in language models

* (55:45) Architectural influences on generalizing knowledge of linguistic structure

* (58:20) “Cognitively relevant regimes” and speed of generalization

* (1:00:45) Acquisition of syntax and sampling simpler vs. more complex sentences

* (1:04:03) Curriculum learning for progressively more complicated syntax

* (1:05:35) Hypothesizing tree-structured representations

* (1:08:00) Reflecting on a prediction from the past

* (1:10:15) Goals and “the correct direction” in AI research

* (1:14:04) Outro

Links:

* Prof. Linzen’s Twitter and homepage

* Papers

* Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies

* RNNS Implicitly Implement Tensor-Product Representations

* How Can We Accelerate Progress Towards Human-like Linguistic Generalization?

* Surprisal does not explain syntactic disambiguation difficulty: evidence from a large-scale benchmark

* How to Plant Trees in LMs: Data and Architectural Effects on the Emergence of Syntactic Inductive Biases


Get full access to The Gradient at thegradientpub.substack.com/subscribe
  continue reading

150 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생