Artwork

The Data Flowcast에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 The Data Flowcast 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Building an End-to-End Data Observability System at Netflix with Joseph Machado

38:54
 
공유
 

Manage episode 482858005 series 2948506
The Data Flowcast에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 The Data Flowcast 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Building reliable data pipelines starts with maintaining strong data quality standards and creating efficient systems for auditing, publishing and monitoring. In this episode, we explore the real-world patterns and best practices for ensuring data pipelines stay accurate, scalable and trustworthy.

Joseph Machado, Senior Data Engineer at Netflix, joins us to share practical insights gleaned from supporting Netflix’s Ads business as well as over a decade of experience in the data engineering space. He discusses implementing audit publish patterns, building observability dashboards, defining in-band and separate data quality checks, and optimizing data validation across large-scale systems.

Key Takeaways:

.

(03:14) Supporting data privacy and engineering efficiency within data systems.

(10:41) Validating outputs with reconciliation checks to catch transformation issues.

(16:06) Applying standardized patterns for auditing, validating and publishing data.

(19:28) Capturing historical check results to monitor system health and improvements.

(21:29) Treating data quality and availability as separate monitoring concerns.

(26:26) Using containerization strategies to streamline pipeline executions.

(29:47) Leveraging orchestration platforms for better visibility and retry capability.

(31:59) Managing business pressure without sacrificing data quality practices.

(35:46) Starting simple with quality checks and evolving toward more complex frameworks.

Resources Mentioned:

Joseph Machado

https://www.linkedin.com/in/josephmachado1991/

Netflix | LinkedIn

https://www.linkedin.com/company/netflix/

Netflix | Website

https://www.netflix.com/browse

Start Data Engineering

https://www.startdataengineering.com/

Apache Airflow

https://airflow.apache.org/

dbt Labs

https://www.getdbt.com/

Great Expectations

https://greatexpectations.io/

https://www.astronomer.io/events/roadshow/london/

https://www.astronomer.io/events/roadshow/new-york/

https://www.astronomer.io/events/roadshow/sydney/

https://www.astronomer.io/events/roadshow/san-francisco/

https://www.astronomer.io/events/roadshow/chicago/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

68 에피소드

Artwork
icon공유
 
Manage episode 482858005 series 2948506
The Data Flowcast에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 The Data Flowcast 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Building reliable data pipelines starts with maintaining strong data quality standards and creating efficient systems for auditing, publishing and monitoring. In this episode, we explore the real-world patterns and best practices for ensuring data pipelines stay accurate, scalable and trustworthy.

Joseph Machado, Senior Data Engineer at Netflix, joins us to share practical insights gleaned from supporting Netflix’s Ads business as well as over a decade of experience in the data engineering space. He discusses implementing audit publish patterns, building observability dashboards, defining in-band and separate data quality checks, and optimizing data validation across large-scale systems.

Key Takeaways:

.

(03:14) Supporting data privacy and engineering efficiency within data systems.

(10:41) Validating outputs with reconciliation checks to catch transformation issues.

(16:06) Applying standardized patterns for auditing, validating and publishing data.

(19:28) Capturing historical check results to monitor system health and improvements.

(21:29) Treating data quality and availability as separate monitoring concerns.

(26:26) Using containerization strategies to streamline pipeline executions.

(29:47) Leveraging orchestration platforms for better visibility and retry capability.

(31:59) Managing business pressure without sacrificing data quality practices.

(35:46) Starting simple with quality checks and evolving toward more complex frameworks.

Resources Mentioned:

Joseph Machado

https://www.linkedin.com/in/josephmachado1991/

Netflix | LinkedIn

https://www.linkedin.com/company/netflix/

Netflix | Website

https://www.netflix.com/browse

Start Data Engineering

https://www.startdataengineering.com/

Apache Airflow

https://airflow.apache.org/

dbt Labs

https://www.getdbt.com/

Great Expectations

https://greatexpectations.io/

https://www.astronomer.io/events/roadshow/london/

https://www.astronomer.io/events/roadshow/new-york/

https://www.astronomer.io/events/roadshow/sydney/

https://www.astronomer.io/events/roadshow/san-francisco/

https://www.astronomer.io/events/roadshow/chicago/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

68 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생