Artwork

The Data Flowcast에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 The Data Flowcast 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Inside Modern Data Infrastructure at Massdriver with Cory O’Daniel and Jake Ferriero

31:24
 
공유
 

Manage episode 497520304 series 2053958
The Data Flowcast에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 The Data Flowcast 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Managing modern data platforms means navigating a web of complex infrastructure, competing team needs and evolving security standards. For data teams to truly thrive, infrastructure must become both accessible and compliant without sacrificing velocity or reliability.

In this episode, we’re joined by Cory O’Daniel, CEO and Co-Founder at Massdriver, and Jacob Ferriero, Senior Software Engineer at Astronomer, to unpack what it takes to make data platform engineering scalable, sustainable and secure. They share lessons from years of experience working with DevOps, ML teams and platform engineers and discuss how Airflow fits into the orchestration layer of today’s data stacks.

Key Takeaways:

(03:27) Making infrastructure accessible without deep ops knowledge.

(07:23) Distinct personas and responsibilities across data teams.

(09:53) Infrastructure hurdles specific to ML workloads.

(11:13) Compliance and governance shaping platform design.

(13:27) Tooling mismatches between teams cause friction.

(15:13) Airflow’s orchestration role within broader system architecture.

(22:10) Creating reusable infrastructure patterns for consistency.

(24:13) Enabling secure access without slowing down development.

(26:55) Opportunities to improve Airflow with event-driven and reliability tooling.

Resources Mentioned:

Cory O’Daniel

https://www.linkedin.com/in/coryodaniel/

Massdriver | LinkedIn

https://www.linkedin.com/company/massdriver/

Massdriver | Website

https://www.massdriver.cloud/

Jacob Ferriero

https://www.linkedin.com/in/jacob-ferriero/

Astronomer

https://www.linkedin.com/company/astronomer/

Apache Airflow

https://airflow.apache.org/

Prequel

https://www.prequel.co/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

72 에피소드

Artwork
icon공유
 
Manage episode 497520304 series 2053958
The Data Flowcast에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 The Data Flowcast 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Managing modern data platforms means navigating a web of complex infrastructure, competing team needs and evolving security standards. For data teams to truly thrive, infrastructure must become both accessible and compliant without sacrificing velocity or reliability.

In this episode, we’re joined by Cory O’Daniel, CEO and Co-Founder at Massdriver, and Jacob Ferriero, Senior Software Engineer at Astronomer, to unpack what it takes to make data platform engineering scalable, sustainable and secure. They share lessons from years of experience working with DevOps, ML teams and platform engineers and discuss how Airflow fits into the orchestration layer of today’s data stacks.

Key Takeaways:

(03:27) Making infrastructure accessible without deep ops knowledge.

(07:23) Distinct personas and responsibilities across data teams.

(09:53) Infrastructure hurdles specific to ML workloads.

(11:13) Compliance and governance shaping platform design.

(13:27) Tooling mismatches between teams cause friction.

(15:13) Airflow’s orchestration role within broader system architecture.

(22:10) Creating reusable infrastructure patterns for consistency.

(24:13) Enabling secure access without slowing down development.

(26:55) Opportunities to improve Airflow with event-driven and reliability tooling.

Resources Mentioned:

Cory O’Daniel

https://www.linkedin.com/in/coryodaniel/

Massdriver | LinkedIn

https://www.linkedin.com/company/massdriver/

Massdriver | Website

https://www.massdriver.cloud/

Jacob Ferriero

https://www.linkedin.com/in/jacob-ferriero/

Astronomer

https://www.linkedin.com/company/astronomer/

Apache Airflow

https://airflow.apache.org/

Prequel

https://www.prequel.co/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

72 에피소드

Wszystkie odcinki

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생