Artwork

The Data Flowcast에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 The Data Flowcast 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

How Airflow and AI Power Investigative Journalism at the Financial Times with Zdravko Hvarlingov

24:28
 
공유
 

Manage episode 516689556 series 2053958
The Data Flowcast에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 The Data Flowcast 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

The Financial Times leverages Airflow and AI to uncover powerful stories hidden within vast, unstructured data.

In this episode, Zdravko Hvarlingov, Senior Software Engineer at the Financial Times, discusses building multi-tenant Airflow systems and AI-driven pipelines that surface stories that might otherwise be missed. Zdravko walks through entity extraction and fuzzy matching, linking the UK Register of Members’ Financial Interests with Companies House, and how this work cuts weeks of manual analysis to minutes.

Key Takeaways:

00:00 Introduction.

02:12 What computational journalism means for day-to-day newsroom work.

05:22 Why a shared orchestration platform supports consistent, scalable workflows.

08:30 Tradeoffs of one centralized platform versus many separate instances.

11:52 Using pipelines to structure messy sources for faster analysis.

14:14 Turning recurring disclosures into usable data for investigations.

16:03 Applying lightweight ML and matching to reveal entities and links.

18:46 How automation reduces manual effort and shortens time to insight.

20:41 Practical improvements that make backfilling and reliability easier.

Resources Mentioned:

Zdravko Hvarlingov

https://www.linkedin.com/in/zdravko-hvarlingov-3aa36016b/

Financial Times | LinkedIn

https://www.linkedin.com/company/financial-times/

Financial Times | Website

https://www.ft.com/

Apache Airflow

https://airflow.apache.org/

UK Register of Members’ Financial Interests

https://www.parliament.uk/mps-lords-and-offices/standards-and-financial-interests/parliamentary-commissioner-for-standards/registers-of-interests/register-of-members-financial-interests/

UK Companies House

https://www.gov.uk/government/organisations/companies-house

Doppler

https://www.doppler.com/

Kubernetes

https://kubernetes.io/

Airflow Kubernetes Executor

https://airflow.apache.org/docs/apache-airflow/stable/executor/kubernetes.html

GitHub

https://github.com/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

82 에피소드

Artwork
icon공유
 
Manage episode 516689556 series 2053958
The Data Flowcast에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 The Data Flowcast 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

The Financial Times leverages Airflow and AI to uncover powerful stories hidden within vast, unstructured data.

In this episode, Zdravko Hvarlingov, Senior Software Engineer at the Financial Times, discusses building multi-tenant Airflow systems and AI-driven pipelines that surface stories that might otherwise be missed. Zdravko walks through entity extraction and fuzzy matching, linking the UK Register of Members’ Financial Interests with Companies House, and how this work cuts weeks of manual analysis to minutes.

Key Takeaways:

00:00 Introduction.

02:12 What computational journalism means for day-to-day newsroom work.

05:22 Why a shared orchestration platform supports consistent, scalable workflows.

08:30 Tradeoffs of one centralized platform versus many separate instances.

11:52 Using pipelines to structure messy sources for faster analysis.

14:14 Turning recurring disclosures into usable data for investigations.

16:03 Applying lightweight ML and matching to reveal entities and links.

18:46 How automation reduces manual effort and shortens time to insight.

20:41 Practical improvements that make backfilling and reliability easier.

Resources Mentioned:

Zdravko Hvarlingov

https://www.linkedin.com/in/zdravko-hvarlingov-3aa36016b/

Financial Times | LinkedIn

https://www.linkedin.com/company/financial-times/

Financial Times | Website

https://www.ft.com/

Apache Airflow

https://airflow.apache.org/

UK Register of Members’ Financial Interests

https://www.parliament.uk/mps-lords-and-offices/standards-and-financial-interests/parliamentary-commissioner-for-standards/registers-of-interests/register-of-members-financial-interests/

UK Companies House

https://www.gov.uk/government/organisations/companies-house

Doppler

https://www.doppler.com/

Kubernetes

https://kubernetes.io/

Airflow Kubernetes Executor

https://airflow.apache.org/docs/apache-airflow/stable/executor/kubernetes.html

GitHub

https://github.com/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

82 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생