Player FM 앱으로 오프라인으로 전환하세요!
Optimizing Large-Scale Deployments at LinkedIn with Rahul Gade
Manage episode 453266231 series 2948506
Scaling deployments for a billion users demands innovation, precision and resilience. In this episode, we dive into how LinkedIn optimizes its continuous deployment process using Apache Airflow. Rahul Gade, Staff Software Engineer at LinkedIn, shares his insights on building scalable systems and democratizing deployments for over 10,000 engineers.
Rahul discusses the challenges of managing large-scale deployments across 6,000 services and how his team leverages Airflow to enhance efficiency, reliability and user accessibility.
Key Takeaways:
(01:36) LinkedIn minimizes human involvement in production to reduce errors.
(02:00) Airflow powers LinkedIn’s Continuous Deployment platform.
(05:43) Continuous deployment adoption grew from 8% to a targeted 80%.
(11:25) Kubernetes ensures scalability and flexibility for deployments.
(12:04) A custom UI offers real-time deployment transparency.
(16:23) No-code YAML workflows simplify deployment tasks.
(17:18) Canaries and metrics ensure safe deployments across fabrics.
(20:45) A gateway service ensures redundancy across Airflow clusters.
(24:22) Abstractions let engineers focus on development, not logistics.
(25:20) Multi-language support in Airflow 3.0 simplifies adoption.
Resources Mentioned:
https://www.linkedin.com/in/rahul-gade-68666818/
LinkedIn -
https://www.linkedin.com/company/linkedin/
https://airflow.apache.org/
https://kubernetes.io/
https://www.openpolicyagent.org/
https://backstage.io/
https://astronomer.typeform.com/airflowsurvey24
Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.
#AI #Automation #Airflow #MachineLearning
37 에피소드
Optimizing Large-Scale Deployments at LinkedIn with Rahul Gade
The Data Flowcast: Mastering Airflow for Data Engineering & AI
Manage episode 453266231 series 2948506
Scaling deployments for a billion users demands innovation, precision and resilience. In this episode, we dive into how LinkedIn optimizes its continuous deployment process using Apache Airflow. Rahul Gade, Staff Software Engineer at LinkedIn, shares his insights on building scalable systems and democratizing deployments for over 10,000 engineers.
Rahul discusses the challenges of managing large-scale deployments across 6,000 services and how his team leverages Airflow to enhance efficiency, reliability and user accessibility.
Key Takeaways:
(01:36) LinkedIn minimizes human involvement in production to reduce errors.
(02:00) Airflow powers LinkedIn’s Continuous Deployment platform.
(05:43) Continuous deployment adoption grew from 8% to a targeted 80%.
(11:25) Kubernetes ensures scalability and flexibility for deployments.
(12:04) A custom UI offers real-time deployment transparency.
(16:23) No-code YAML workflows simplify deployment tasks.
(17:18) Canaries and metrics ensure safe deployments across fabrics.
(20:45) A gateway service ensures redundancy across Airflow clusters.
(24:22) Abstractions let engineers focus on development, not logistics.
(25:20) Multi-language support in Airflow 3.0 simplifies adoption.
Resources Mentioned:
https://www.linkedin.com/in/rahul-gade-68666818/
LinkedIn -
https://www.linkedin.com/company/linkedin/
https://airflow.apache.org/
https://kubernetes.io/
https://www.openpolicyagent.org/
https://backstage.io/
https://astronomer.typeform.com/airflowsurvey24
Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.
#AI #Automation #Airflow #MachineLearning
37 에피소드
모든 에피소드
×플레이어 FM에 오신것을 환영합니다!
플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.