Artwork

Jacob Andra에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Jacob Andra 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Data Security in AI: Talbot West CEO Jacob Andra Interviews Scott Peiffer of i4Ops

32:21
 
공유
 

Manage episode 512130242 series 3684643
Jacob Andra에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Jacob Andra 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Send us a text

Most enterprise AI projects fail because companies hold back their data. They spend hundreds of thousands of dollars training models on sanitized datasets, afraid to expose sensitive information. They get generic answers that create no competitive advantage.

In this episode, Scott Peiffer from i4Ops cuts through the AI hype to address the real challenge facing enterprises: how to deploy AI systems that actually create value while keeping proprietary data secure.

What you'll learn

Scott Peiffer brings 35 years of data storage and security experience from Intel, NetApp, and now i4Ops. He explains why the current approach to enterprise AI deployment produces disappointing results and what companies should do instead.

The FOMO problem Companies receive mandates from the C-suite to "do AI" without clear objectives or strategy. Research shows 90% of these models fail to deliver value because organizations train them on limited data subsets, withholding their most valuable information out of security concerns. Employee data, sales conversations, customer support transcripts, and strategic documents remain locked away, resulting in AI systems that cannot deliver insights specific to the business.

The challenge compounds when companies lack a systematic approach. They bolt new AI tools onto poorly designed foundations without addressing underlying digital infrastructure issues.

Why digital transformation comes first Successful AI deployment requires a foundation in broader digital transformation strategy. Companies need to start with a clear end vision, map current systems and processes, and create a stepwise progression rather than bolting new tools onto poorly designed foundations. This means defining where you want to go (higher efficiency, preparing for acquisition, competitive advantage), understanding your current state through systems mapping, and identifying a practical path forward that does not break the bank or disrupt operations.

Knowledge management as competitive advantage The future requires every competitive organization to maintain an in-house fine-tuned RAG system trained on company-specific knowledge. This means addressing fundamental questions about documentation, data quality, and information flow before implementing AI solutions. Scott emphasizes that approximately 75% of companies now use local data models rather than cloud solutions when dealing with sensitive information. The security wrapper stays in private data centers where organizations maintain complete control.

The data security gap While data at rest and data in transit receive encryption protection, data in use remains vulnerable. When you download an Excel file to analyze it, that data sits unencrypted on your machine. You can copy it, manipulate it, send it to competitors by accident or malicious intent. When employees ask public AI models to summarize files, that unencrypted data gets ingested into public language models.

i4Ops' approach Rather than plugging holes after they appear, i4Ops uses a patented virtual machine approach that starts with a default of zero data egress. Data cannot leave the protected environment unless explicitly whitelisted, regardless of credentials or authentication methods.

Where AI creates the most value Beyond the obvious cost savings in customer support and repetitive tasks, AI delivers transformational value when companies train models on their complete proprietary datasets to solve specific business problems. Scott describes how his team solved a weeks-long coding problem in hours by training a model exclusively on their kernel code. They asked two questions and had their answer.

Produc

  continue reading

12 에피소드

Artwork
icon공유
 
Manage episode 512130242 series 3684643
Jacob Andra에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Jacob Andra 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Send us a text

Most enterprise AI projects fail because companies hold back their data. They spend hundreds of thousands of dollars training models on sanitized datasets, afraid to expose sensitive information. They get generic answers that create no competitive advantage.

In this episode, Scott Peiffer from i4Ops cuts through the AI hype to address the real challenge facing enterprises: how to deploy AI systems that actually create value while keeping proprietary data secure.

What you'll learn

Scott Peiffer brings 35 years of data storage and security experience from Intel, NetApp, and now i4Ops. He explains why the current approach to enterprise AI deployment produces disappointing results and what companies should do instead.

The FOMO problem Companies receive mandates from the C-suite to "do AI" without clear objectives or strategy. Research shows 90% of these models fail to deliver value because organizations train them on limited data subsets, withholding their most valuable information out of security concerns. Employee data, sales conversations, customer support transcripts, and strategic documents remain locked away, resulting in AI systems that cannot deliver insights specific to the business.

The challenge compounds when companies lack a systematic approach. They bolt new AI tools onto poorly designed foundations without addressing underlying digital infrastructure issues.

Why digital transformation comes first Successful AI deployment requires a foundation in broader digital transformation strategy. Companies need to start with a clear end vision, map current systems and processes, and create a stepwise progression rather than bolting new tools onto poorly designed foundations. This means defining where you want to go (higher efficiency, preparing for acquisition, competitive advantage), understanding your current state through systems mapping, and identifying a practical path forward that does not break the bank or disrupt operations.

Knowledge management as competitive advantage The future requires every competitive organization to maintain an in-house fine-tuned RAG system trained on company-specific knowledge. This means addressing fundamental questions about documentation, data quality, and information flow before implementing AI solutions. Scott emphasizes that approximately 75% of companies now use local data models rather than cloud solutions when dealing with sensitive information. The security wrapper stays in private data centers where organizations maintain complete control.

The data security gap While data at rest and data in transit receive encryption protection, data in use remains vulnerable. When you download an Excel file to analyze it, that data sits unencrypted on your machine. You can copy it, manipulate it, send it to competitors by accident or malicious intent. When employees ask public AI models to summarize files, that unencrypted data gets ingested into public language models.

i4Ops' approach Rather than plugging holes after they appear, i4Ops uses a patented virtual machine approach that starts with a default of zero data egress. Data cannot leave the protected environment unless explicitly whitelisted, regardless of credentials or authentication methods.

Where AI creates the most value Beyond the obvious cost savings in customer support and repetitive tasks, AI delivers transformational value when companies train models on their complete proprietary datasets to solve specific business problems. Scott describes how his team solved a weeks-long coding problem in hours by training a model exclusively on their kernel code. They asked two questions and had their answer.

Produc

  continue reading

12 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생