Artwork

Tessl에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Tessl 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Why LLMs Keep Missing This One Thing | Jason Ganz

49:20
 
공유
 

Manage episode 490560490 series 3585084
Tessl에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Tessl 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Can LLMs replace structured systems to scale enterprises?
Jason Ganz, Senior Manager DX at dbt Labs, joins Simon Maple to unpack why, despite the rapid rise of AI systems, enterprises still rely on structured data for consistency and reliable decision making.
They also discuss:

  • the invisible edge cases LLMs can’t see
  • difference between software engineering and data engineering in AI
  • the mismatch between AI output and business logic
  • what the data engineer of the future actually does

AI Native Dev, powered by Tessl and our global dev community, is your go-to podcast for solutions in software development in the age of AI. Tune in as we engage with engineers, founders, and open-source innovators to talk all things AI, security, and development.
Connect with us here:
1. Jason Ganz (LinkedIn)- https://www.linkedin.com/in/jasnonaz/
2. Jason Ganz (X)- https://x.com/jasnonaz
3. dbt Labs- https://www.getdbt.com/
4. dbt Fusion engine- https://www.getdbt.com/product/fusion
5. dbt Community- https://www.getdbt.com/community
6. Simon Maple- https://www.linkedin.com/in/simonmaple/
7. Tessl- https://www.linkedin.com/company/tesslio/
8. AI Native Dev- https://www.linkedin.com/showcase/ai-native-dev/
00:00 Trailer
01:01 Introduction
01:41 dbt Labs
04:39 Data engineers
07:39 LLMs understanding
13:15 AI isn’t as lazy as humans
15:29 Problem: the scaffolding to get data
17:38 Best contextual results
19:40 Dealing with security
25:00 Structured data
27:37 Problems with LLMs and data
29:47 Exact numbers
32:10 Hallucinations
34:28 Human validation
36:20 MCP servers
39:09 UX bottlenecks
42:27 Quality of data
44:00 The future of data engineers
47:02 getdbt.com
48:09 Outro

Join the AI Native Dev Community on Discord: https://tessl.co/4ghikjh
Ask us questions: [email protected]

  continue reading

챕터

1. Trailer (00:00:00)

2. Introduction (00:01:01)

3. dbt Labs (00:01:41)

4. Data engineers (00:04:39)

5. LLMs understanding (00:07:39)

6. AI isn’t as lazy as humans (00:13:15)

7. Problem: the scaffolding to get data (00:15:29)

8. Best contextual results (00:17:38)

9. Dealing with security (00:20:21)

10. Structured data (00:25:41)

11. Problems with LLMs and data (00:28:18)

12. Exact numbers (00:30:28)

13. Hallucinations (00:32:51)

14. Human validation (00:35:09)

15. MCP servers (00:37:01)

16. UX bottlenecks (00:39:50)

17. Quality of data (00:43:08)

18. The future of data engineers (00:44:41)

19. getdbt.com (00:47:43)

20. Outro (00:48:50)

75 에피소드

Artwork
icon공유
 
Manage episode 490560490 series 3585084
Tessl에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Tessl 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Can LLMs replace structured systems to scale enterprises?
Jason Ganz, Senior Manager DX at dbt Labs, joins Simon Maple to unpack why, despite the rapid rise of AI systems, enterprises still rely on structured data for consistency and reliable decision making.
They also discuss:

  • the invisible edge cases LLMs can’t see
  • difference between software engineering and data engineering in AI
  • the mismatch between AI output and business logic
  • what the data engineer of the future actually does

AI Native Dev, powered by Tessl and our global dev community, is your go-to podcast for solutions in software development in the age of AI. Tune in as we engage with engineers, founders, and open-source innovators to talk all things AI, security, and development.
Connect with us here:
1. Jason Ganz (LinkedIn)- https://www.linkedin.com/in/jasnonaz/
2. Jason Ganz (X)- https://x.com/jasnonaz
3. dbt Labs- https://www.getdbt.com/
4. dbt Fusion engine- https://www.getdbt.com/product/fusion
5. dbt Community- https://www.getdbt.com/community
6. Simon Maple- https://www.linkedin.com/in/simonmaple/
7. Tessl- https://www.linkedin.com/company/tesslio/
8. AI Native Dev- https://www.linkedin.com/showcase/ai-native-dev/
00:00 Trailer
01:01 Introduction
01:41 dbt Labs
04:39 Data engineers
07:39 LLMs understanding
13:15 AI isn’t as lazy as humans
15:29 Problem: the scaffolding to get data
17:38 Best contextual results
19:40 Dealing with security
25:00 Structured data
27:37 Problems with LLMs and data
29:47 Exact numbers
32:10 Hallucinations
34:28 Human validation
36:20 MCP servers
39:09 UX bottlenecks
42:27 Quality of data
44:00 The future of data engineers
47:02 getdbt.com
48:09 Outro

Join the AI Native Dev Community on Discord: https://tessl.co/4ghikjh
Ask us questions: [email protected]

  continue reading

챕터

1. Trailer (00:00:00)

2. Introduction (00:01:01)

3. dbt Labs (00:01:41)

4. Data engineers (00:04:39)

5. LLMs understanding (00:07:39)

6. AI isn’t as lazy as humans (00:13:15)

7. Problem: the scaffolding to get data (00:15:29)

8. Best contextual results (00:17:38)

9. Dealing with security (00:20:21)

10. Structured data (00:25:41)

11. Problems with LLMs and data (00:28:18)

12. Exact numbers (00:30:28)

13. Hallucinations (00:32:51)

14. Human validation (00:35:09)

15. MCP servers (00:37:01)

16. UX bottlenecks (00:39:50)

17. Quality of data (00:43:08)

18. The future of data engineers (00:44:41)

19. getdbt.com (00:47:43)

20. Outro (00:48:50)

75 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생