Artwork

HackerNoon에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 HackerNoon 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

The Future of Crypto Transactions? AI That Predicts Network Congestion

7:03
 
공유
 

Manage episode 515253286 series 3474385
HackerNoon에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 HackerNoon 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/the-future-of-crypto-transactions-ai-that-predicts-network-congestion.
FENN uses deep learning to predict blockchain transaction fees by modeling mempool states, network speed, and transaction data.
Check more stories related to tech-stories at: https://hackernoon.com/c/tech-stories. You can also check exclusive content about #bitcoin-transaction-fees, #mempool-management, #fee-rate-analysis, #bitcoin-fee-estimation, #blockchain-ai, #mempool-analysis, #btcflow, #bitcoin-transaction-feerate, and more.
This story was written by: @blockchainize. Learn more about this writer by checking @blockchainize's about page, and for more stories, please visit hackernoon.com.
Blockchain transaction fees fluctuate due to limited block capacity and network congestion. The Fee Estimation based on Neural Network (FENN) framework tackles this challenge by combining three data sources—transaction features, mempool states, and network characteristics. Using deep learning methods like LSTM and attention mechanisms, FENN predicts future block behaviors and network trends to estimate optimal transaction fees. This dual-layer model—feature extraction and prediction—helps improve accuracy and efficiency in confirming blockchain transactions.

  continue reading

345 에피소드

Artwork
icon공유
 
Manage episode 515253286 series 3474385
HackerNoon에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 HackerNoon 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/the-future-of-crypto-transactions-ai-that-predicts-network-congestion.
FENN uses deep learning to predict blockchain transaction fees by modeling mempool states, network speed, and transaction data.
Check more stories related to tech-stories at: https://hackernoon.com/c/tech-stories. You can also check exclusive content about #bitcoin-transaction-fees, #mempool-management, #fee-rate-analysis, #bitcoin-fee-estimation, #blockchain-ai, #mempool-analysis, #btcflow, #bitcoin-transaction-feerate, and more.
This story was written by: @blockchainize. Learn more about this writer by checking @blockchainize's about page, and for more stories, please visit hackernoon.com.
Blockchain transaction fees fluctuate due to limited block capacity and network congestion. The Fee Estimation based on Neural Network (FENN) framework tackles this challenge by combining three data sources—transaction features, mempool states, and network characteristics. Using deep learning methods like LSTM and attention mechanisms, FENN predicts future block behaviors and network trends to estimate optimal transaction fees. This dual-layer model—feature extraction and prediction—helps improve accuracy and efficiency in confirming blockchain transactions.

  continue reading

345 에피소드

सभी एपिसोड

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생