Artwork

Kostas Pardalis, Nitay Joffe에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Kostas Pardalis, Nitay Joffe 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Reinventing Stream Processing: From LinkedIn to Responsive with Apurva Mehta

58:13
 
공유
 

Manage episode 469992700 series 3594857
Kostas Pardalis, Nitay Joffe에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Kostas Pardalis, Nitay Joffe 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Summary

In this episode, Apurva Mehta, co-founder and CEO of Responsive, recounts his extensive journey in stream processing—from his early work at LinkedIn and Confluent to his current venture at Responsive.

He explains how stream processing evolved from simple event ingestion and graph indexing to powering complex, stateful applications such as search indexing, inventory management, and trade settlement.

Apurva clarifies the often-misunderstood concept of “real time,” arguing that low latency (often in the one- to two-second range) is more accurate for many applications than the instantaneous response many assume. He delves into the challenges of state management, discussing the limitations of embedded state stores like RocksDB and traditional databases (e.g., Postgres) when faced with high update rates and complex transactional requirements.

The conversation also covers the trade-offs between SQL-based streaming interfaces and more flexible APIs, and how Responsive is innovating by decoupling state from compute—leveraging remote state solutions built on object stores (like S3) with specialized systems such as SlateDB—to improve elasticity, cost efficiency, and operational simplicity in mission-critical applications.

Chapters

00:00 Introduction to Apurva Mehta and Streaming Background
08:50 Defining Real-Time in Streaming Contexts
14:18 Challenges of Stateful Stream Processing
19:50 Comparing Streaming Processing with Traditional Databases
26:38 Product Perspectives on Streaming vs Analytical Systems
31:10 Operational Rigor and Business Opportunities
38:31 Developers' Needs: Beyond SQL
45:53 Simplifying Infrastructure: The Cost of Complexity
51:03 The Future of Streaming Applications

Click here to view the episode transcript.

  continue reading

22 에피소드

Artwork
icon공유
 
Manage episode 469992700 series 3594857
Kostas Pardalis, Nitay Joffe에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Kostas Pardalis, Nitay Joffe 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Summary

In this episode, Apurva Mehta, co-founder and CEO of Responsive, recounts his extensive journey in stream processing—from his early work at LinkedIn and Confluent to his current venture at Responsive.

He explains how stream processing evolved from simple event ingestion and graph indexing to powering complex, stateful applications such as search indexing, inventory management, and trade settlement.

Apurva clarifies the often-misunderstood concept of “real time,” arguing that low latency (often in the one- to two-second range) is more accurate for many applications than the instantaneous response many assume. He delves into the challenges of state management, discussing the limitations of embedded state stores like RocksDB and traditional databases (e.g., Postgres) when faced with high update rates and complex transactional requirements.

The conversation also covers the trade-offs between SQL-based streaming interfaces and more flexible APIs, and how Responsive is innovating by decoupling state from compute—leveraging remote state solutions built on object stores (like S3) with specialized systems such as SlateDB—to improve elasticity, cost efficiency, and operational simplicity in mission-critical applications.

Chapters

00:00 Introduction to Apurva Mehta and Streaming Background
08:50 Defining Real-Time in Streaming Contexts
14:18 Challenges of Stateful Stream Processing
19:50 Comparing Streaming Processing with Traditional Databases
26:38 Product Perspectives on Streaming vs Analytical Systems
31:10 Operational Rigor and Business Opportunities
38:31 Developers' Needs: Beyond SQL
45:53 Simplifying Infrastructure: The Cost of Complexity
51:03 The Future of Streaming Applications

Click here to view the episode transcript.

  continue reading

22 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생