The award-winning WIRED UK Podcast with James Temperton and the rest of the team. Listen every week for the an informed and entertaining rundown of latest technology, science, business and culture news. New episodes every Friday.
…
continue reading
SNIA Technical Council에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 SNIA Technical Council 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!
Player FM 앱으로 오프라인으로 전환하세요!
#142: ZNS: Enabling in-place Updates and Transparent High Queue-Depths
Manage episode 287636872 series 1393477
SNIA Technical Council에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 SNIA Technical Council 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Zoned Namespaces represent the first step towards the standardization of Open-Channel SSD concepts in NVMe. Specifically, ZNS brings the ability to implement data placement policies in the host, thus providing a mechanism to lower the write-amplification factor (WAF), (ii) lower NAND over-provisioning, and (iii) tighten tail latencies. Initial ZNS architectures envisioned large zones targeting archival use cases. This motivated the creation of the "Append Command” - a specialization of nameless writes that allows to increase the device I/O queue depth over the initial limitation imposed by the zone write pointer. While this is an elegant solution, backed by academic research, the changes required on file systems and applications is making adoption more difficult. As an alternative, we have proposed exposing a per-zone random write window that allows out-of-order writes around the existing write pointer. This solution brings two benefits over the “Append Command”: First, it allows I/Os to arrive out-of-order without any host software changes. Second, it allows in-place updates within the window, which enables existing log-structured file systems and applications to retain their metadata model without incurring a WAF penalty. In this talk, we will cover in detail the concept of the random write window, the use cases it addresses, and the changes we have done in the Linux stack to support it. Learning Objectives: Learn about general ZNS architecture and ecosystem,Learn about the use cases supported in ZNS and the design decisions in the current specification with regards to in-place updates and multiple inflight I/Os,Learn about new features being brought to NVMe to support in-place updates and transparent hight queue depths.
…
continue reading
146 에피소드
Manage episode 287636872 series 1393477
SNIA Technical Council에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 SNIA Technical Council 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Zoned Namespaces represent the first step towards the standardization of Open-Channel SSD concepts in NVMe. Specifically, ZNS brings the ability to implement data placement policies in the host, thus providing a mechanism to lower the write-amplification factor (WAF), (ii) lower NAND over-provisioning, and (iii) tighten tail latencies. Initial ZNS architectures envisioned large zones targeting archival use cases. This motivated the creation of the "Append Command” - a specialization of nameless writes that allows to increase the device I/O queue depth over the initial limitation imposed by the zone write pointer. While this is an elegant solution, backed by academic research, the changes required on file systems and applications is making adoption more difficult. As an alternative, we have proposed exposing a per-zone random write window that allows out-of-order writes around the existing write pointer. This solution brings two benefits over the “Append Command”: First, it allows I/Os to arrive out-of-order without any host software changes. Second, it allows in-place updates within the window, which enables existing log-structured file systems and applications to retain their metadata model without incurring a WAF penalty. In this talk, we will cover in detail the concept of the random write window, the use cases it addresses, and the changes we have done in the Linux stack to support it. Learning Objectives: Learn about general ZNS architecture and ecosystem,Learn about the use cases supported in ZNS and the design decisions in the current specification with regards to in-place updates and multiple inflight I/Os,Learn about new features being brought to NVMe to support in-place updates and transparent hight queue depths.
…
continue reading
146 에피소드
すべてのエピソード
×플레이어 FM에 오신것을 환영합니다!
플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.