Artwork

Richard Seidl - Experte für Software-Entwicklung und Testautomatisierung and Richard Seidl - Experte für Software-Entwicklung에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Richard Seidl - Experte für Software-Entwicklung und Testautomatisierung and Richard Seidl - Experte für Software-Entwicklung 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Acceptance test-driven LLM development - David Faragó

29:34
 
공유
 

Manage episode 425476502 series 3466870
Richard Seidl - Experte für Software-Entwicklung und Testautomatisierung and Richard Seidl - Experte für Software-Entwicklung에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Richard Seidl - Experte für Software-Entwicklung und Testautomatisierung and Richard Seidl - Experte für Software-Entwicklung 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Wie ATDD bei der LLM-Entwicklung unterstützt

"Das ist relativ anspruchsvoll. Letzten Endes haben wir ein paar Komponenten. Wir machen zuerst Speech-to-Text und dann auf reiner Textbasis benutzen wir ein Language-Model." - David Faragó

Vorab: Entschuldigt die schlechte Audio-Qualität, das ist uns leider erst im Nachgang aufgefallen. Ich hoffe, der Inhalt tröstet Euch darüber hinweg :-) Die Entwicklung von Large Language Models (LLMs) und die Rolle von Acceptance Test Driven Development (ATDD) sind zentrale Themen in der KI-Entwicklung. David, Experte in der Entwicklung und Qualitätssicherung von KI-basierten Telefon-Bots für Arztpraxen, teilt seine Erfahrungen und Einblicke in diesen Prozess. Die Herausforderungen und Lösungsansätze beim Trainieren und Testen von LLMs, einschließlich der Nutzung von Prompt Engineering und Fine Tuning, werden beleuchtet. Besonders bemerkenswert ist der Ansatz, ATDD-Methoden auf LLM-Entwicklungen anzuwenden, um die Qualität und Effektivität der Modelle zu verbessern. Ein weiterer Fokus liegt auf dem CPMAI-Prozess, der eine moderne Herangehensweise an die Entwicklung und Implementierung von KI-Projekten darstellt.

David ist Deep-Learning-Engineer bei mediform, spezialisiert auf Fine-Tuning von Large-Language-Models, Prompt-Engineering und Microservices. Nebenbei leitet er QPR Technologies, ein Beratungsunternehmen für innovative Qualitätssicherung, und ist Mitglied des Leitungsgremiums der GI-Fachgruppe Test, Analyse und Verifikation.

Themen im Podcast:

  • Die neuen Horizonte der KI-Entwicklung
  • Die Strategie hinter dem Erfolg: Entwicklung und Testing
  • Von Theorie zur Praxis: Acceptance Test Driven LLM Development
  • Die Rolle von CPMAI im Entwicklungszyklus
  • Die Zukunft der KI-Entwicklung

Werde jetzt Teil der Podcast-Community und hol Dir exklusive Vorteile: https://swt.fm/com

Kontakt zu David:

Die Podcast-Website: https://www.software-testing.fm

Danke an die Community-Partner des Podcasts:

Credits:

  continue reading

챕터

1. Willkommen (00:00:00)

2. Die Praxis von LLM im Einsatz für Telefon-Bots (00:02:21)

3. Herausforderungen und Lösungsansätze in der LLM-Entwicklung (00:05:08)

4. Einführung in das Acceptance Test-Driven LLM Development (00:11:29)

5. Der Zyklus der Dialoganalyse und Modellverbesserung (00:14:53)

6. Integration von CPMAI und Machine Learning Best Practices (00:20:07)

7. Einführung in Acceptance Test-Driven LLM-Entwicklung (00:25:14)

115 에피소드

Artwork
icon공유
 
Manage episode 425476502 series 3466870
Richard Seidl - Experte für Software-Entwicklung und Testautomatisierung and Richard Seidl - Experte für Software-Entwicklung에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Richard Seidl - Experte für Software-Entwicklung und Testautomatisierung and Richard Seidl - Experte für Software-Entwicklung 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Wie ATDD bei der LLM-Entwicklung unterstützt

"Das ist relativ anspruchsvoll. Letzten Endes haben wir ein paar Komponenten. Wir machen zuerst Speech-to-Text und dann auf reiner Textbasis benutzen wir ein Language-Model." - David Faragó

Vorab: Entschuldigt die schlechte Audio-Qualität, das ist uns leider erst im Nachgang aufgefallen. Ich hoffe, der Inhalt tröstet Euch darüber hinweg :-) Die Entwicklung von Large Language Models (LLMs) und die Rolle von Acceptance Test Driven Development (ATDD) sind zentrale Themen in der KI-Entwicklung. David, Experte in der Entwicklung und Qualitätssicherung von KI-basierten Telefon-Bots für Arztpraxen, teilt seine Erfahrungen und Einblicke in diesen Prozess. Die Herausforderungen und Lösungsansätze beim Trainieren und Testen von LLMs, einschließlich der Nutzung von Prompt Engineering und Fine Tuning, werden beleuchtet. Besonders bemerkenswert ist der Ansatz, ATDD-Methoden auf LLM-Entwicklungen anzuwenden, um die Qualität und Effektivität der Modelle zu verbessern. Ein weiterer Fokus liegt auf dem CPMAI-Prozess, der eine moderne Herangehensweise an die Entwicklung und Implementierung von KI-Projekten darstellt.

David ist Deep-Learning-Engineer bei mediform, spezialisiert auf Fine-Tuning von Large-Language-Models, Prompt-Engineering und Microservices. Nebenbei leitet er QPR Technologies, ein Beratungsunternehmen für innovative Qualitätssicherung, und ist Mitglied des Leitungsgremiums der GI-Fachgruppe Test, Analyse und Verifikation.

Themen im Podcast:

  • Die neuen Horizonte der KI-Entwicklung
  • Die Strategie hinter dem Erfolg: Entwicklung und Testing
  • Von Theorie zur Praxis: Acceptance Test Driven LLM Development
  • Die Rolle von CPMAI im Entwicklungszyklus
  • Die Zukunft der KI-Entwicklung

Werde jetzt Teil der Podcast-Community und hol Dir exklusive Vorteile: https://swt.fm/com

Kontakt zu David:

Die Podcast-Website: https://www.software-testing.fm

Danke an die Community-Partner des Podcasts:

Credits:

  continue reading

챕터

1. Willkommen (00:00:00)

2. Die Praxis von LLM im Einsatz für Telefon-Bots (00:02:21)

3. Herausforderungen und Lösungsansätze in der LLM-Entwicklung (00:05:08)

4. Einführung in das Acceptance Test-Driven LLM Development (00:11:29)

5. Der Zyklus der Dialoganalyse und Modellverbesserung (00:14:53)

6. Integration von CPMAI und Machine Learning Best Practices (00:20:07)

7. Einführung in Acceptance Test-Driven LLM-Entwicklung (00:25:14)

115 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생