Artwork

Dr. Satya Mallick에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Dr. Satya Mallick 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Common Pitfalls in Computer Vision & AI Projects (and How to Avoid Them)

17:48
 
공유
 

Manage episode 514440944 series 3693358
Dr. Satya Mallick에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Dr. Satya Mallick 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

In this episode, we dig deep into the unglamorous side of AI and computer vision projects — the mistakes, misfires, and blind spots that too often derail even the most promising teams. Based on BigVision.ai's playbook "Common Pitfalls in Computer Vision & AI Projects", we walk through a field-tested catalog of pitfalls drawn from real failures and successes.

We cover:

  • Why ambiguous problem statements and fuzzy success criteria lead to early project drift

  • The dangers of unrepresentative training data and how missing edge cases sabotage models

  • Labeling mistakes, data leakage, and splits that inflate your offline metrics

  • The trap of being model-centric instead of data-centric

  • Shortcut learning, spurious correlations, and how models "cheat"

  • Misaligned metrics, thresholds, and how optimizing the wrong thing kills business impact

  • Over-engineering vs. solid baselines

  • The ambition vs. reproducibility tension (drift, code, data versioning)

  • Deployment constraints, monitoring, silent failures, and how AI degrades in the wild

  • Fairness, safety, adversarial robustness, and societal risks

  • Human factors, UX, privacy, compliance, and integrating AI into real workflows

  • ROI illusions: why model accuracy alone doesn't pay the bills

We also reveal their "pre-flight checklist" — a lean but powerful go/no-go tool to ensure your project is grounded in real needs and avoids death by scope creep.

Why listen? This isn't theory — it's a survival guide. Whether you're a founder, ML engineer, product lead, or AI skeptic, you'll pick up concrete lessons you can apply before you spend millions. Avoiding these traps could be the difference between shipping a brittle proof-of-concept and deploying a real, reliable system that delivers value.

Tune in for cautionary tales, war stories, and actionable tactics you can steal for your next vision project.

Resources

  1. https://bigvision.ai/pitfalls [PDF]
  2. Big Vision LLC - Computer Vision and AI Consulting Services.
  3. OpenCV University - Start your AI Career today!
  continue reading

6 에피소드

Artwork
icon공유
 
Manage episode 514440944 series 3693358
Dr. Satya Mallick에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Dr. Satya Mallick 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

In this episode, we dig deep into the unglamorous side of AI and computer vision projects — the mistakes, misfires, and blind spots that too often derail even the most promising teams. Based on BigVision.ai's playbook "Common Pitfalls in Computer Vision & AI Projects", we walk through a field-tested catalog of pitfalls drawn from real failures and successes.

We cover:

  • Why ambiguous problem statements and fuzzy success criteria lead to early project drift

  • The dangers of unrepresentative training data and how missing edge cases sabotage models

  • Labeling mistakes, data leakage, and splits that inflate your offline metrics

  • The trap of being model-centric instead of data-centric

  • Shortcut learning, spurious correlations, and how models "cheat"

  • Misaligned metrics, thresholds, and how optimizing the wrong thing kills business impact

  • Over-engineering vs. solid baselines

  • The ambition vs. reproducibility tension (drift, code, data versioning)

  • Deployment constraints, monitoring, silent failures, and how AI degrades in the wild

  • Fairness, safety, adversarial robustness, and societal risks

  • Human factors, UX, privacy, compliance, and integrating AI into real workflows

  • ROI illusions: why model accuracy alone doesn't pay the bills

We also reveal their "pre-flight checklist" — a lean but powerful go/no-go tool to ensure your project is grounded in real needs and avoids death by scope creep.

Why listen? This isn't theory — it's a survival guide. Whether you're a founder, ML engineer, product lead, or AI skeptic, you'll pick up concrete lessons you can apply before you spend millions. Avoiding these traps could be the difference between shipping a brittle proof-of-concept and deploying a real, reliable system that delivers value.

Tune in for cautionary tales, war stories, and actionable tactics you can steal for your next vision project.

Resources

  1. https://bigvision.ai/pitfalls [PDF]
  2. Big Vision LLC - Computer Vision and AI Consulting Services.
  3. OpenCV University - Start your AI Career today!
  continue reading

6 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생