Artwork

Adam Bien에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Adam Bien 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

TornadoVM: The Need for GPU Speed

59:41
 
공유
 

Manage episode 492939989 series 2469611
Adam Bien에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Adam Bien 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
An airhacks.fm conversation with Michalis Papadimitriou (@mikepapadim) about:
starting with Java 8, first computer experiences with Pentium 2, doom 2 and Microsoft Paint, university introduction to Object-oriented programming using Objects First and bluej IDE, Monte Carlo simulations for financial portfolio optimization in Java, porting Java applications to OpenCL for GPU acceleration achieving 20x speedup, working at Huawei on GPU hardware, writing unit tests as introduction to TornadoVM, working on FPGA integration and Graal compiler optimizations, experience at OctoAI startup doing AI compiler optimizations for TensorFlow and PyTorch models, understanding model formats evolution from ONNX to GGUF, standardization of LLM inference through Llama models, implementing GPU-accelerated Llama 3 inference in pure Java using TornadoVM, achieving 3-6x speedup over CPU implementations, supporting multiple models including Mistral and working on qwen 3 and deepseek, differences between models mainly in normalization layers, GGUF becoming quasi-standard for LLM model distribution, TornadoVM's Consume and Persist API for optimizing GPU data transfers, challenges with OpenCL deprecation on macOS and plans for Metal backend, importance of developer experience and avoiding python dependencies for Java projects, runtime and compiler optimizations for GPU inference, kernel fusion techniques, upcoming integration with langchain4j, potential of Java ecosystem with Graal VM and Project Panama FFM for high-performance inference, advantages of Java's multi-threading capabilities for inference workloads

Michalis Papadimitriou on twitter: @mikepapadim

  continue reading

366 에피소드

Artwork
icon공유
 
Manage episode 492939989 series 2469611
Adam Bien에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Adam Bien 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
An airhacks.fm conversation with Michalis Papadimitriou (@mikepapadim) about:
starting with Java 8, first computer experiences with Pentium 2, doom 2 and Microsoft Paint, university introduction to Object-oriented programming using Objects First and bluej IDE, Monte Carlo simulations for financial portfolio optimization in Java, porting Java applications to OpenCL for GPU acceleration achieving 20x speedup, working at Huawei on GPU hardware, writing unit tests as introduction to TornadoVM, working on FPGA integration and Graal compiler optimizations, experience at OctoAI startup doing AI compiler optimizations for TensorFlow and PyTorch models, understanding model formats evolution from ONNX to GGUF, standardization of LLM inference through Llama models, implementing GPU-accelerated Llama 3 inference in pure Java using TornadoVM, achieving 3-6x speedup over CPU implementations, supporting multiple models including Mistral and working on qwen 3 and deepseek, differences between models mainly in normalization layers, GGUF becoming quasi-standard for LLM model distribution, TornadoVM's Consume and Persist API for optimizing GPU data transfers, challenges with OpenCL deprecation on macOS and plans for Metal backend, importance of developer experience and avoiding python dependencies for Java projects, runtime and compiler optimizations for GPU inference, kernel fusion techniques, upcoming integration with langchain4j, potential of Java ecosystem with Graal VM and Project Panama FFM for high-performance inference, advantages of Java's multi-threading capabilities for inference workloads

Michalis Papadimitriou on twitter: @mikepapadim

  continue reading

366 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생