Artwork

Adam Bien에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Adam Bien 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Enterprise LLM Integration: Bridging Java and AI in Business Applications

1:05:08
 
공유
 

Manage episode 474255560 series 2469611
Adam Bien에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Adam Bien 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
An airhacks.fm conversation with Burr Sutter (@burrsutter) about:
discussion about integrating LLMs into enterprise Java applications, challenges with non-deterministic LLM outputs in deterministic code environments, limitations of chat interfaces for power users in enterprise settings, preference for form-based applications with prompts running behind the scenes, using LLMs to understand unstructured data while providing structured interfaces, maintaining existing CRUD systems while using LLMs for unstructured data like emails and support tickets, practical examples of using LLMs to generate code from business requirements, creating assistants with system messages and short user prompts, potential for embeddings to replace text prompts in the future, developer journey in learning LLM integration including prompts, tools, RAG, and agentic workflows, benefits of specialized agents over one general agent, using LLMs for code generation with limitations for complex use cases, hybrid approaches combining LLMs with human oversight, using LLMs for email routing and support case classification, potential for extracting knowledge from enterprise data sources like Confluence and SharePoint, quality assurance with LLM judges, discussion of small language models versus large ones, model distillation and fine-tuning for specific enterprise use cases, cost considerations for model training versus using off-the-shelf models with better tool invocation, prediction that models will become more efficient and run on commodity hardware in the future, focus on post-training inference and reliable results

Burr Sutter on twitter: @burrsutter

  continue reading

367 에피소드

Artwork
icon공유
 
Manage episode 474255560 series 2469611
Adam Bien에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Adam Bien 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
An airhacks.fm conversation with Burr Sutter (@burrsutter) about:
discussion about integrating LLMs into enterprise Java applications, challenges with non-deterministic LLM outputs in deterministic code environments, limitations of chat interfaces for power users in enterprise settings, preference for form-based applications with prompts running behind the scenes, using LLMs to understand unstructured data while providing structured interfaces, maintaining existing CRUD systems while using LLMs for unstructured data like emails and support tickets, practical examples of using LLMs to generate code from business requirements, creating assistants with system messages and short user prompts, potential for embeddings to replace text prompts in the future, developer journey in learning LLM integration including prompts, tools, RAG, and agentic workflows, benefits of specialized agents over one general agent, using LLMs for code generation with limitations for complex use cases, hybrid approaches combining LLMs with human oversight, using LLMs for email routing and support case classification, potential for extracting knowledge from enterprise data sources like Confluence and SharePoint, quality assurance with LLM judges, discussion of small language models versus large ones, model distillation and fine-tuning for specific enterprise use cases, cost considerations for model training versus using off-the-shelf models with better tool invocation, prediction that models will become more efficient and run on commodity hardware in the future, focus on post-training inference and reliable results

Burr Sutter on twitter: @burrsutter

  continue reading

367 에피소드

ทุกตอน

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생