Artwork

Seismic Soundoff and Society of Exploration Geophysicists (SEG)에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Seismic Soundoff and Society of Exploration Geophysicists (SEG) 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

210: Unveiling Seismic Secrets - Inside Machine Learning's Black Box

19:17
 
공유
 

Manage episode 397550018 series 1231780
Seismic Soundoff and Society of Exploration Geophysicists (SEG)에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Seismic Soundoff and Society of Exploration Geophysicists (SEG) 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
"It's ​not ​like ​machine ​learning ​will ​solve ​all ​the ​problems. ​It's ​not ​a ​magical ​tool." David Lubo-Robles highlights his award-winning paper that utilized novel machine learning methods to enhance interpretability in seismic volume data from the Gulf of Mexico. Discover the power of two open-source tools - SHAP (Shapley Additive Explanations) and LIME (Local Interpretable Model-agnostic Explanations) - in enhancing the interpretability of machine models. David takes us through his team's research that garnered an Honorable Mention for Best Paper in Interpretation. He also shares his journey into geophysics, driven by a fascination with the Earth and energy discovery. Listeners will gain insight into the critical role of input quality in machine learning outcomes, the importance of balancing datasets, and the necessity of geoscientific validation. The episode also addresses common misconceptions about machine learning in geophysics, emphasizing the need for critical thinking and geological knowledge to apply these advanced techniques. 📋 EPISODE HIGHLIGHTS * 2:04 - How David discovered geophysics * 4:32 - How SHAP and LIME improve machine learning for geophysics * 6:00 - What to do when algorithms misclassify areas of interest * 10:47 - A misconception common for machine learning in geophysics * 13:37 - Sensory interpretation can be very subjective, even in the same area * 15:00 - Managing uncertainty in the subsurface ✍️ EPISODE LINKS Visit https://seg.org/podcasts/episode-210-unveiling-seismic-secrets-inside-machine-learnings-black-box/ for the complete interview transcript and all the links referenced in the show. 💬GUEST BIO Dr. David Lubo-Robles is a Postdoctoral Research Associate at the University of Oklahoma. David is a geophysicist interested in developing and applying innovative tools using machine learning, quantitative seismic interpretation, and seismic attribute analysis for oil and gas, geothermal reservoir characterization, hydrogen storage, and carbon capture, utilization, and storage (CCUS). His paper, "Quantifying the sensitivity of seismic facies classification to seismic attribute selection: An explainable machine-learning study," was awarded Honorable Mention, Best Paper in Interpretation in 2022. David received his MS and Ph.D. in Geophysics at the University of Oklahoma. SHOW CREDITS Seismic Soundoff showcases conversations with geoscientists addressing the challenges of energy, water, and climate. SEG creates these episodes to celebrate and inspire the geophysicists of today and tomorrow. If you have episode ideas or feedback for the show or want to sponsor a future episode, email the show at podcast@seg.org. This episode was hosted, edited, and produced by Andrew Geary at TreasureMint. The SEG podcast team is composed of Jennifer Cobb, Kathy Gamble, and Ally McGinnis.
  continue reading

243 에피소드

Artwork
icon공유
 
Manage episode 397550018 series 1231780
Seismic Soundoff and Society of Exploration Geophysicists (SEG)에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Seismic Soundoff and Society of Exploration Geophysicists (SEG) 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
"It's ​not ​like ​machine ​learning ​will ​solve ​all ​the ​problems. ​It's ​not ​a ​magical ​tool." David Lubo-Robles highlights his award-winning paper that utilized novel machine learning methods to enhance interpretability in seismic volume data from the Gulf of Mexico. Discover the power of two open-source tools - SHAP (Shapley Additive Explanations) and LIME (Local Interpretable Model-agnostic Explanations) - in enhancing the interpretability of machine models. David takes us through his team's research that garnered an Honorable Mention for Best Paper in Interpretation. He also shares his journey into geophysics, driven by a fascination with the Earth and energy discovery. Listeners will gain insight into the critical role of input quality in machine learning outcomes, the importance of balancing datasets, and the necessity of geoscientific validation. The episode also addresses common misconceptions about machine learning in geophysics, emphasizing the need for critical thinking and geological knowledge to apply these advanced techniques. 📋 EPISODE HIGHLIGHTS * 2:04 - How David discovered geophysics * 4:32 - How SHAP and LIME improve machine learning for geophysics * 6:00 - What to do when algorithms misclassify areas of interest * 10:47 - A misconception common for machine learning in geophysics * 13:37 - Sensory interpretation can be very subjective, even in the same area * 15:00 - Managing uncertainty in the subsurface ✍️ EPISODE LINKS Visit https://seg.org/podcasts/episode-210-unveiling-seismic-secrets-inside-machine-learnings-black-box/ for the complete interview transcript and all the links referenced in the show. 💬GUEST BIO Dr. David Lubo-Robles is a Postdoctoral Research Associate at the University of Oklahoma. David is a geophysicist interested in developing and applying innovative tools using machine learning, quantitative seismic interpretation, and seismic attribute analysis for oil and gas, geothermal reservoir characterization, hydrogen storage, and carbon capture, utilization, and storage (CCUS). His paper, "Quantifying the sensitivity of seismic facies classification to seismic attribute selection: An explainable machine-learning study," was awarded Honorable Mention, Best Paper in Interpretation in 2022. David received his MS and Ph.D. in Geophysics at the University of Oklahoma. SHOW CREDITS Seismic Soundoff showcases conversations with geoscientists addressing the challenges of energy, water, and climate. SEG creates these episodes to celebrate and inspire the geophysicists of today and tomorrow. If you have episode ideas or feedback for the show or want to sponsor a future episode, email the show at podcast@seg.org. This episode was hosted, edited, and produced by Andrew Geary at TreasureMint. The SEG podcast team is composed of Jennifer Cobb, Kathy Gamble, and Ally McGinnis.
  continue reading

243 에피소드

Tutti gli episodi

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드