Artwork

Jochen Wersdörfer / Dominik Geldmacher에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Jochen Wersdörfer / Dominik Geldmacher 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Auphonic

1:17:36
 
공유
 

Manage episode 468320416 series 2536516
Jochen Wersdörfer / Dominik Geldmacher에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Jochen Wersdörfer / Dominik Geldmacher 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Auphonic (click here to comment)

, Jochen

🎙️ Wie Auphonic entstand – Ein Blick hinter die Kulissen mit Gründer Georg.

In dieser Episode haben wir Georg, den Gründer von Auphonic, zu Gast und sprechen mit ihm darüber, wie alles begann. 🚀 Früher gab es für die Nachbearbeitung von Audio fast ausschließlich Echtzeit-Tools – aber warum eigentlich? Für Podcasts, bei denen die gesamte Aufnahme bereits vorliegt, wäre eine leistungsfähige Batch-Verarbeitung viel naheliegender gewesen. Genau hier setzte Auphonic an! 🤔

Natürlich sind auch Johannes, Dominik und Jochen wieder mit dabei! Gemeinsam werfen wir einen Blick auf die Entwicklung der letzten zehn Jahre: Während frühere Machine-Learning-Modelle hauptsächlich dazu dienten, die Parameter klassischer Audioprozessoren wie Kompressoren und Limitern automatisch einzustellen, setzen moderne Systeme zunehmend auf End-to-End-Deep-Learning. Heute sind Audio-to-Audio-Modelle der Stand der Technik, die das Signal direkt transformieren – ohne den Umweg über klassische Audiotools. 🎛️➡️🎶

Außerdem gibt Georg spannende Einblicke in die technische Infrastruktur von Auphonic:

  • ⚙️ Django im Backend, Vue.js für den Transkripteditor, ein bisschen htmx und alpine.js
  • 🚀 Celery als Task-Queue, das seit zehn Jahren treue Dienste leistet
  • 🎧 Eigenes Training von Machine-Learning-Modellen auf On-Premise-GPUs, Inferenz über GPU-Instanzen bei Hetzner.

Und natürlich diskutieren wir darüber, warum es kein „One-Size-Fits-All“-Modell für Podcasts gibt – schließlich will ein True-Crime-Podcast vielleicht Atemgeräusche entfernen, während ein Yoga-Podcast genau diese beibehalten möchte. 🧘‍♂️🔎

Hört rein – viel Spaß bei dieser Episode! 🎧

Shownotes

Unsere E-Mail für Fragen, Anregungen & Kommentare: [email protected]

Auphonic

  continue reading

66 에피소드

Artwork

Auphonic

Python Podcast

32 subscribers

published

icon공유
 
Manage episode 468320416 series 2536516
Jochen Wersdörfer / Dominik Geldmacher에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Jochen Wersdörfer / Dominik Geldmacher 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Auphonic (click here to comment)

, Jochen

🎙️ Wie Auphonic entstand – Ein Blick hinter die Kulissen mit Gründer Georg.

In dieser Episode haben wir Georg, den Gründer von Auphonic, zu Gast und sprechen mit ihm darüber, wie alles begann. 🚀 Früher gab es für die Nachbearbeitung von Audio fast ausschließlich Echtzeit-Tools – aber warum eigentlich? Für Podcasts, bei denen die gesamte Aufnahme bereits vorliegt, wäre eine leistungsfähige Batch-Verarbeitung viel naheliegender gewesen. Genau hier setzte Auphonic an! 🤔

Natürlich sind auch Johannes, Dominik und Jochen wieder mit dabei! Gemeinsam werfen wir einen Blick auf die Entwicklung der letzten zehn Jahre: Während frühere Machine-Learning-Modelle hauptsächlich dazu dienten, die Parameter klassischer Audioprozessoren wie Kompressoren und Limitern automatisch einzustellen, setzen moderne Systeme zunehmend auf End-to-End-Deep-Learning. Heute sind Audio-to-Audio-Modelle der Stand der Technik, die das Signal direkt transformieren – ohne den Umweg über klassische Audiotools. 🎛️➡️🎶

Außerdem gibt Georg spannende Einblicke in die technische Infrastruktur von Auphonic:

  • ⚙️ Django im Backend, Vue.js für den Transkripteditor, ein bisschen htmx und alpine.js
  • 🚀 Celery als Task-Queue, das seit zehn Jahren treue Dienste leistet
  • 🎧 Eigenes Training von Machine-Learning-Modellen auf On-Premise-GPUs, Inferenz über GPU-Instanzen bei Hetzner.

Und natürlich diskutieren wir darüber, warum es kein „One-Size-Fits-All“-Modell für Podcasts gibt – schließlich will ein True-Crime-Podcast vielleicht Atemgeräusche entfernen, während ein Yoga-Podcast genau diese beibehalten möchte. 🧘‍♂️🔎

Hört rein – viel Spaß bei dieser Episode! 🎧

Shownotes

Unsere E-Mail für Fragen, Anregungen & Kommentare: [email protected]

Auphonic

  continue reading

66 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생