№42: Рекомендаційні системи, ч.2. Будуємо моделі, зворотній зв'язок, а як схочемо, то і ChatGPT підключимо
Manage episode 365302267 series 3361795
Денис, Ігор, Саша에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Денис, Ігор, Саша 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
В гостях Дмитро Войтех, СТО @ S-PRO
🔞 Тут будуть матюки 🔞
Робочі посилання і коментарі в каналі https://t.me/midnight_chatter
- 00:00 - 00:56 – Intro
- 00:57 - 02:50 – з чого почати побудову recommender system; як будувати baseline моделі
- 02:51 - 04:10 – говоримо про бейзлайн систему рекомендації для зображень
- 04:11 - 7:30 – говоримо про бейзлайн систему рекомендації для текстових даних; Bag of Words; BM-25
- 7:31 - 11:15 – які хороші методи для отримування вектора ознак для тексту? TF-IDF
- 11:16 - 14:47 – проблема холодного старту (Cold Start)
- 14:48 - 20:10 – моделі рекомендацій на основі механізму зворотнього зв’язку; кенселінг за дієвидло; колаборативна фільтрація – @benfred/implicit, улюблена Alternating Least Squares у каглерів
- 20:11 - 22:06 – знову говоримо про cold start; маленький кейс megogo
- 22:07 - 30:25 – Word2Vec, чи то пак Entity2Vec — як оригінальний NLP алгоритм можна використовував для побудови рекомендацій
- 30:26 - 33:20 – векторна арифметика на елементах вашої системи — як віднімати та додавати зображення та тексти один від/до одного; фантазуємо, які пошукові системи потрібні людям; слухайте подкаст з Олесем Петрівом, де космічні кораблі подорожують просторами ембедінгів
- 33:21 - 36:53 – рекомендації на базі графових нейронних мереж (GNN); чому це можна розглядати як логічне продовження моделей на базі Word2Vec; кейс AliBaba;
- 36:54 - 39:45 – чим графові нейронні мережі схожі на конволюційні; 3b1b про конволюції
- 39:46 - 45:50 – як використовувати Mixture of Experts моделі в рекомендаціях; пейпер Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer; згадуємо symbolic AI та експретні системи
- 45:51 - 51:56 – рекомендаційні системи на основні архітектури нейронних мереж Трансформер; паралелі з Deep & Wide model; слідкуйте за https://eugeneyan.com/
- 51:57 - 1:01:46 – алгоритми Learning to Rank (навчання ранжуванню) — побороли recall, починаємо бороти precision; поточкові, попарні та помножинні підходи; RankNet; LambdaMart
- 1:01:47 - 1:06:19 – рекомендації на базі моделі CLIP - Contrastive Language–Image Pre-training; як тюнити CLIP
- 1:06:20 - 1:07:28 – знову фантазуємо про просунуті пошукові інтерфейси; reverse image search
- 1:07:29 - 1:11:40 – як використовувати LLM для рекомендацій? Забудьте про ембеддінги – несемо prompt engineering в маси!
- 1:11:41 - 1:17:18 – крейзі ідеї в світі LLM – ChatGPT розкаже вам, як спати та бігати, враховуючи дані з вашого Apple Watch; як LLM обробляє великі дані через маленьке контекстне вікно
- 1:17:19 - 1:22:13 – Підбиваємо підсумки; перераховуємо теми в галузі рекомендаційних систем, про які ми НЕ поговорили, але які варто подосліджувати. Коли повернеться подкаст?
Долучайтесь до наших соцмереж:
- https://t.me/midnight_chatter
- Twitter @O_Balachky
- TikTok @o_balachky
Музика: https://www.streambeats.com/ | @stasgavrylov
45 에피소드