Artwork

NLP Highlights and Allen Institute for Artificial Intelligence에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 NLP Highlights and Allen Institute for Artificial Intelligence 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

96 - Question Answering as an Annotation Format, with Luke Zettlemoyer

29:54
 
공유
 

Manage episode 246073641 series 1452120
NLP Highlights and Allen Institute for Artificial Intelligence에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 NLP Highlights and Allen Institute for Artificial Intelligence 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
In this episode, we chat with Luke Zettlemoyer about Question Answering as a format for crowdsourcing annotations of various semantic phenomena in text. We start by talking about QA-SRL and QAMR, two datasets that use QA pairs to annotate predicate-argument relations at the sentence level. Luke describes how this annotation scheme makes it possible to obtain annotations from non-experts, and discusses the tradeoffs involved in choosing this scheme. Then we talk about the challenges involved in using QA-based annotations for more complex phenomena like coreference. Finally, we briefly discuss the value of crowd-labeled datasets given the recent developments in pretraining large language models. Luke is an associate professor at the University of Washington and a Research Scientist at Facebook AI Research.
  continue reading

145 에피소드

Artwork
icon공유
 
Manage episode 246073641 series 1452120
NLP Highlights and Allen Institute for Artificial Intelligence에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 NLP Highlights and Allen Institute for Artificial Intelligence 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
In this episode, we chat with Luke Zettlemoyer about Question Answering as a format for crowdsourcing annotations of various semantic phenomena in text. We start by talking about QA-SRL and QAMR, two datasets that use QA pairs to annotate predicate-argument relations at the sentence level. Luke describes how this annotation scheme makes it possible to obtain annotations from non-experts, and discusses the tradeoffs involved in choosing this scheme. Then we talk about the challenges involved in using QA-based annotations for more complex phenomena like coreference. Finally, we briefly discuss the value of crowd-labeled datasets given the recent developments in pretraining large language models. Luke is an associate professor at the University of Washington and a Research Scientist at Facebook AI Research.
  continue reading

145 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생