Artificial Intelligence has suddenly gone from the fringes of science to being everywhere. So how did we get here? And where's this all heading? In this new series of Science Friction, we're finding out.
…
continue reading
NLP Highlights and Allen Institute for Artificial Intelligence에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 NLP Highlights and Allen Institute for Artificial Intelligence 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!
Player FM 앱으로 오프라인으로 전환하세요!
138 - Compositional Generalization in Neural Networks, with Najoung Kim
Manage episode 353046391 series 1452120
NLP Highlights and Allen Institute for Artificial Intelligence에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 NLP Highlights and Allen Institute for Artificial Intelligence 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Compositional generalization refers to the capability of models to generalize to out-of-distribution instances by composing information obtained from the training data. In this episode we chatted with Najoung Kim, on how to explicitly evaluate specific kinds of compositional generalization in neural network models of language. Najoung described COGS, a dataset she built for this, some recent results in the space, and why we should be careful about interpreting the results given the current practice of pretraining models of lots of unlabeled text. Najoung's webpage: https://najoungkim.github.io/ Papers we discussed: 1. COGS: A Compositional Generalization Challenge Based on Semantic Interpretation (Kim et al., 2020): https://www.semanticscholar.org/paper/b20ddcbd239f3fa9acc603736ac2e4416302d074 2. Compositional Generalization Requires Compositional Parsers (Weissenhorn et al., 2022): https://www.semanticscholar.org/paper/557ebd17b7c7ac4e09bd167d7b8909b8d74d1153 3. Uncontrolled Lexical Exposure Leads to Overestimation of Compositional Generalization in Pretrained Models (Kim et al., 2022): https://www.semanticscholar.org/paper/8969ea3d254e149aebcfd1ffc8f46910d7cb160e Note that we referred to the final paper by an earlier name in the discussion.
…
continue reading
145 에피소드
Manage episode 353046391 series 1452120
NLP Highlights and Allen Institute for Artificial Intelligence에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 NLP Highlights and Allen Institute for Artificial Intelligence 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Compositional generalization refers to the capability of models to generalize to out-of-distribution instances by composing information obtained from the training data. In this episode we chatted with Najoung Kim, on how to explicitly evaluate specific kinds of compositional generalization in neural network models of language. Najoung described COGS, a dataset she built for this, some recent results in the space, and why we should be careful about interpreting the results given the current practice of pretraining models of lots of unlabeled text. Najoung's webpage: https://najoungkim.github.io/ Papers we discussed: 1. COGS: A Compositional Generalization Challenge Based on Semantic Interpretation (Kim et al., 2020): https://www.semanticscholar.org/paper/b20ddcbd239f3fa9acc603736ac2e4416302d074 2. Compositional Generalization Requires Compositional Parsers (Weissenhorn et al., 2022): https://www.semanticscholar.org/paper/557ebd17b7c7ac4e09bd167d7b8909b8d74d1153 3. Uncontrolled Lexical Exposure Leads to Overestimation of Compositional Generalization in Pretrained Models (Kim et al., 2022): https://www.semanticscholar.org/paper/8969ea3d254e149aebcfd1ffc8f46910d7cb160e Note that we referred to the final paper by an earlier name in the discussion.
…
continue reading
145 에피소드
모든 에피소드
×플레이어 FM에 오신것을 환영합니다!
플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.