Artificial Intelligence has suddenly gone from the fringes of science to being everywhere. So how did we get here? And where's this all heading? In this new series of Science Friction, we're finding out.
…
continue reading
NLP Highlights and Allen Institute for Artificial Intelligence에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 NLP Highlights and Allen Institute for Artificial Intelligence 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!
Player FM 앱으로 오프라인으로 전환하세요!
129 - Transformers and Hierarchical Structure, with Shunyu Yao
Manage episode 296551674 series 1452120
NLP Highlights and Allen Institute for Artificial Intelligence에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 NLP Highlights and Allen Institute for Artificial Intelligence 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
In this episode, we talk to Shunyu Yao about recent insights into how transformers can represent hierarchical structure in language. Bounded-depth hierarchical structure is thought to be a key feature of natural languages, motivating Shunyu and his coauthors to show that transformers can efficiently represent bounded-depth Dyck languages, which can be thought of as a formal model of the structure of natural languages. We went on to discuss some of the intuitive ideas that emerge from the proofs, connections to RNNs, and insights about positional encodings that may have practical implications. More broadly, we also touched on the role of formal languages and other theoretical tools in modern NLP. Papers discussed in this episode: - Self-Attention Networks Can Process Bounded Hierarchical Languages (https://arxiv.org/abs/2105.11115) - Theoretical Limitations of Self-Attention in Neural Sequence Models (https://arxiv.org/abs/1906.06755) - RNNs can generate bounded hierarchical languages with optimal memory (https://arxiv.org/abs/2010.07515) - On the Practical Computational Power of Finite Precision RNNs for Language Recognition (https://arxiv.org/abs/1805.04908) Shunyu Yao's webpage: https://ysymyth.github.io/ The hosts for this episode are William Merrill and Matt Gardner.
…
continue reading
145 에피소드
Manage episode 296551674 series 1452120
NLP Highlights and Allen Institute for Artificial Intelligence에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 NLP Highlights and Allen Institute for Artificial Intelligence 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
In this episode, we talk to Shunyu Yao about recent insights into how transformers can represent hierarchical structure in language. Bounded-depth hierarchical structure is thought to be a key feature of natural languages, motivating Shunyu and his coauthors to show that transformers can efficiently represent bounded-depth Dyck languages, which can be thought of as a formal model of the structure of natural languages. We went on to discuss some of the intuitive ideas that emerge from the proofs, connections to RNNs, and insights about positional encodings that may have practical implications. More broadly, we also touched on the role of formal languages and other theoretical tools in modern NLP. Papers discussed in this episode: - Self-Attention Networks Can Process Bounded Hierarchical Languages (https://arxiv.org/abs/2105.11115) - Theoretical Limitations of Self-Attention in Neural Sequence Models (https://arxiv.org/abs/1906.06755) - RNNs can generate bounded hierarchical languages with optimal memory (https://arxiv.org/abs/2010.07515) - On the Practical Computational Power of Finite Precision RNNs for Language Recognition (https://arxiv.org/abs/1805.04908) Shunyu Yao's webpage: https://ysymyth.github.io/ The hosts for this episode are William Merrill and Matt Gardner.
…
continue reading
145 에피소드
모든 에피소드
×플레이어 FM에 오신것을 환영합니다!
플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.