Artwork

EETech Media and All About Circuits에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 EETech Media and All About Circuits 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

From Apple to OpenLight: Silicon Photonics and Integrated Lasers with Dr. Tom Mader

41:04
 
공유
 

Manage episode 360972379 series 2661101
EETech Media and All About Circuits에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 EETech Media and All About Circuits 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

I’ll bet that you didn’t know that the original concept for what became the Apple Thunderbolt interface involved optical communication. Well, in this fascinating podcast with Dr. Mader, you will learn that intriguing backstory and much more.

Mader also provides a helpful introduction to silicon photonics technology and applications. Importantly, OpenLight’s business model is designed to allow them to become an Arm-like IP provider for silicon photonics. “We’re the first open siliconics platform that has the lasers and amplifiers integrated on the chip,” explains Mader.

With the OpenLight Process Design Kit (PDK), customers can integrate InP lasers and amplifiers directly into their silicon IC designs at Tower Semiconductor. While the silicon can be employed to guide, modulate, and detect light, you need the InP to amplify. OpenLight literally brings the silicon and the InP together with molecular bonding.

While silicon photonic is already making inroads in a number of important applications, Mader is “excited about the long tail of applications” enabled by OpenLight and their customers.

In addition, Mader recounts his rich technology background that includes developing a patent while interning at Apple, being involved in an early Amazon commercial product, directing engineering at a startup that was inquired by Intel, and his family connections to the legendary Fairchild Semiconductor and our podcast’s name inspiration, Gordon Moore.

So, listen in for other interesting tidbits from this discussion with Mader, including these technical insights:

-A clear description of a silicon photonics system -What makes a quality integrated laser? -How amplitude modulation (AM) and phase modulation (PM) are employed is laser systems

  continue reading

98 에피소드

Artwork
icon공유
 
Manage episode 360972379 series 2661101
EETech Media and All About Circuits에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 EETech Media and All About Circuits 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

I’ll bet that you didn’t know that the original concept for what became the Apple Thunderbolt interface involved optical communication. Well, in this fascinating podcast with Dr. Mader, you will learn that intriguing backstory and much more.

Mader also provides a helpful introduction to silicon photonics technology and applications. Importantly, OpenLight’s business model is designed to allow them to become an Arm-like IP provider for silicon photonics. “We’re the first open siliconics platform that has the lasers and amplifiers integrated on the chip,” explains Mader.

With the OpenLight Process Design Kit (PDK), customers can integrate InP lasers and amplifiers directly into their silicon IC designs at Tower Semiconductor. While the silicon can be employed to guide, modulate, and detect light, you need the InP to amplify. OpenLight literally brings the silicon and the InP together with molecular bonding.

While silicon photonic is already making inroads in a number of important applications, Mader is “excited about the long tail of applications” enabled by OpenLight and their customers.

In addition, Mader recounts his rich technology background that includes developing a patent while interning at Apple, being involved in an early Amazon commercial product, directing engineering at a startup that was inquired by Intel, and his family connections to the legendary Fairchild Semiconductor and our podcast’s name inspiration, Gordon Moore.

So, listen in for other interesting tidbits from this discussion with Mader, including these technical insights:

-A clear description of a silicon photonics system -What makes a quality integrated laser? -How amplitude modulation (AM) and phase modulation (PM) are employed is laser systems

  continue reading

98 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생