Artwork

Taylor Sparks and Andrew Falkowski, Taylor Sparks, and Andrew Falkowski에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Taylor Sparks and Andrew Falkowski, Taylor Sparks, and Andrew Falkowski 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Episode 83: Computed Tomography at Zeiss

1:05:22
 
공유
 

Manage episode 403432972 series 2913105
Taylor Sparks and Andrew Falkowski, Taylor Sparks, and Andrew Falkowski에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Taylor Sparks and Andrew Falkowski, Taylor Sparks, and Andrew Falkowski 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Examining the inside of a material is often a destructive process that risks obscuring or deforming critical details. However, advances in computed tomography have opened new opportunities to obtain high resolution, three-dimensional reconstructions of materials in a non-destructive manner. Through this technique materials scientists can now identify cracks and voids in materials without the need for mounting and polishing, observe processes like battery degradation and dendrite growth in real time, and even obtain 3D diffraction data for identifying phase distributions in a material. In covering this fascinating topic, we are joined by William Harris from Zeiss Microscopy who shares his expertise as he walks us through the many ways computed tomography is reshaping materials science.

Selected References:

  • Withers et al. X-ray computed tomography [LINK]
  • Villarraga-Gómez et al. Assessing rechargeable batteries with 3D X-ray microscopy, computed tomography [LINK]
  • Finegan et al. Investigating lithium-ion battery materials during overcharge-induced thermal runaway [LINK]
  • XinChen et al. Interlaminar to intralaminar mode I and II crack bifurcation due to aligned carbon nanotube reinforcement of aerospace-grade advanced composites [LINK]
  • Plessis et al. Effects of defects on mechanical properties in metal additive manufacturing: A review focusing on X-ray tomography insights [LINK]
  • Refuting a 70-Year Approach to Predicting Material Microstructure [LINK]
  • CT Analysis of a Meteorite [LINK]
  • Johnson et al. Analysis of the interdependent relationship between porosity, deformation, and crack growth during compression loading of LPBF AlSi10Mg [LINK]
  • Badran et al. Automated segmentation of computed tomography images of fiber-reinforced composites by deep learning [LINK]
  • Villarraga-Gómez et al. Improving throughput and image quality of high-resolution 3D X-ray microscopes using deep learning reconstruction techniques [LINK]

This episode is sponsored by Zeiss Microscopy. With over 175 years of innovation in microscopy, ZEISS is proud to offer an extensive suite of optical, 3D X-ray, SEM, and FIB-SEM microscopes to help scientists and engineers understand their materials. Every ZEISS microscope comes with the commitment of providing the highest quality instrument, deep application expertise, and a robust global support network. You can learn more about their work and services by visiting their website.

The Materialism Podcast is sponsored by Cal Nano, leading experts in spark plasma sintering and cryomilling technologies. You can learn more about their work and services by visiting their website.

This Materialism Podcast is also sponsored by Materials Today, an Elsevier community dedicated to the creation and sharing of materials science knowledge and experience through their peer-reviewed journals, academic conferences, educational webinars, and more.

Thanks to Kolobyte and Alphabot for letting us use their music in the show!

If you have questions or feedback please send us emails at materialism.podcast@gmail.com or connect with us on social media: Instagram, Twitter.

Materialism Team: Taylor Sparks (co-host, co-creator), Andrew Falkowski (co-host, co-creator), Jared Duffy (production, marketing, and editing).

Keywords: Xray Tomography Computed Zeiss CT Materials Research Microstructure

  continue reading

90 에피소드

Artwork
icon공유
 
Manage episode 403432972 series 2913105
Taylor Sparks and Andrew Falkowski, Taylor Sparks, and Andrew Falkowski에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Taylor Sparks and Andrew Falkowski, Taylor Sparks, and Andrew Falkowski 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Examining the inside of a material is often a destructive process that risks obscuring or deforming critical details. However, advances in computed tomography have opened new opportunities to obtain high resolution, three-dimensional reconstructions of materials in a non-destructive manner. Through this technique materials scientists can now identify cracks and voids in materials without the need for mounting and polishing, observe processes like battery degradation and dendrite growth in real time, and even obtain 3D diffraction data for identifying phase distributions in a material. In covering this fascinating topic, we are joined by William Harris from Zeiss Microscopy who shares his expertise as he walks us through the many ways computed tomography is reshaping materials science.

Selected References:

  • Withers et al. X-ray computed tomography [LINK]
  • Villarraga-Gómez et al. Assessing rechargeable batteries with 3D X-ray microscopy, computed tomography [LINK]
  • Finegan et al. Investigating lithium-ion battery materials during overcharge-induced thermal runaway [LINK]
  • XinChen et al. Interlaminar to intralaminar mode I and II crack bifurcation due to aligned carbon nanotube reinforcement of aerospace-grade advanced composites [LINK]
  • Plessis et al. Effects of defects on mechanical properties in metal additive manufacturing: A review focusing on X-ray tomography insights [LINK]
  • Refuting a 70-Year Approach to Predicting Material Microstructure [LINK]
  • CT Analysis of a Meteorite [LINK]
  • Johnson et al. Analysis of the interdependent relationship between porosity, deformation, and crack growth during compression loading of LPBF AlSi10Mg [LINK]
  • Badran et al. Automated segmentation of computed tomography images of fiber-reinforced composites by deep learning [LINK]
  • Villarraga-Gómez et al. Improving throughput and image quality of high-resolution 3D X-ray microscopes using deep learning reconstruction techniques [LINK]

This episode is sponsored by Zeiss Microscopy. With over 175 years of innovation in microscopy, ZEISS is proud to offer an extensive suite of optical, 3D X-ray, SEM, and FIB-SEM microscopes to help scientists and engineers understand their materials. Every ZEISS microscope comes with the commitment of providing the highest quality instrument, deep application expertise, and a robust global support network. You can learn more about their work and services by visiting their website.

The Materialism Podcast is sponsored by Cal Nano, leading experts in spark plasma sintering and cryomilling technologies. You can learn more about their work and services by visiting their website.

This Materialism Podcast is also sponsored by Materials Today, an Elsevier community dedicated to the creation and sharing of materials science knowledge and experience through their peer-reviewed journals, academic conferences, educational webinars, and more.

Thanks to Kolobyte and Alphabot for letting us use their music in the show!

If you have questions or feedback please send us emails at materialism.podcast@gmail.com or connect with us on social media: Instagram, Twitter.

Materialism Team: Taylor Sparks (co-host, co-creator), Andrew Falkowski (co-host, co-creator), Jared Duffy (production, marketing, and editing).

Keywords: Xray Tomography Computed Zeiss CT Materials Research Microstructure

  continue reading

90 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드