Artwork

HackerNoon에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 HackerNoon 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Understanding Stochastic Average Gradient

5:32
 
공유
 

Manage episode 422417885 series 3474148
HackerNoon에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 HackerNoon 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/understanding-stochastic-average-gradient.
Techniques like Stochastic Gradient Descent (SGD) are designed to improve the calculation performance but at the cost of convergence accuracy.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #ml, #machine-learning, #algorithms, #gradient-descent, #ai-optimization, #model-optimization, #loss-functions, #convergence-rates, and more.
This story was written by: @kustarev. Learn more about this writer by checking @kustarev's about page, and for more stories, please visit hackernoon.com.
Gradient descent is a popular optimization used for locating global minima of the provided objective functions. The algorithm uses the gradient of the objective function to traverse the function slope until it reaches the lowest point. Full Gradient Descent (FG) and Stochastic Gradient Descent (SGD) are two popular variations of the algorithm. FG uses the entire dataset during each iteration and provides a high convergence rate at a high computation cost. At each iteration, SGD uses a subset of data to run the algorithm. It is far more efficient but with an uncertain convergence. Stochastic Average Gradient (SAG) is another variation that provides the benefits of both previous algorithms. It uses the average of past gradients and a subset of the dataset to provide a high convergence rate with low computation. The algorithm can be further modified to improve its efficiency using vectorization and mini-batches.

  continue reading

316 에피소드

Artwork
icon공유
 
Manage episode 422417885 series 3474148
HackerNoon에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 HackerNoon 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/understanding-stochastic-average-gradient.
Techniques like Stochastic Gradient Descent (SGD) are designed to improve the calculation performance but at the cost of convergence accuracy.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #ml, #machine-learning, #algorithms, #gradient-descent, #ai-optimization, #model-optimization, #loss-functions, #convergence-rates, and more.
This story was written by: @kustarev. Learn more about this writer by checking @kustarev's about page, and for more stories, please visit hackernoon.com.
Gradient descent is a popular optimization used for locating global minima of the provided objective functions. The algorithm uses the gradient of the objective function to traverse the function slope until it reaches the lowest point. Full Gradient Descent (FG) and Stochastic Gradient Descent (SGD) are two popular variations of the algorithm. FG uses the entire dataset during each iteration and provides a high convergence rate at a high computation cost. At each iteration, SGD uses a subset of data to run the algorithm. It is far more efficient but with an uncertain convergence. Stochastic Average Gradient (SAG) is another variation that provides the benefits of both previous algorithms. It uses the average of past gradients and a subset of the dataset to provide a high convergence rate with low computation. The algorithm can be further modified to improve its efficiency using vectorization and mini-batches.

  continue reading

316 에피소드

Wszystkie odcinki

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생